Towards elementary 2-toposes

Luca Mesiti

University of KwaZulu-Natal SAMS Congress 2024 - Pretoria

05/12/2024

1-dimensional elementary topoi

Definition.

An **elementary topos** is a category C that

- (E1) has finite limits;
- (E2) is cartesian closed;
- (E3) has a subobject classifier.

Finite limits include products (which model logical conjunction) and pullbacks (which model logical substitution).

Cartesian closed means that for every pair $X, Y \in \mathcal{C}$ there is an object Y^X representing maps from X to Y (this models logical implication).

Subobject classifiers

The archetypal subobject classifier is given by the characteristic functions, exhibiting *Set* as the archetypal elementary topos.

For every set X, there is a bijection

{subsets of
$$X$$
} \cong {functions $X \rightarrow \{T, F\}$ }

which identifies a subset A of X with the characteristic function of A

$$\chi_A:\ X\ \longrightarrow\ \{T,F\}$$

$$x\ \longmapsto\ \begin{cases} T\ \text{if}\ x\in A\\ F\ \text{if}\ x\notin A \end{cases}$$

Subsets and hence (logical propositions) are classified by {T, F}.

Subobject classifiers

 $T: * \hookrightarrow \{T, F\}$ which picks T is the archetypal subobject classifier.

We can capture it with a universal property!

The subset $T: * \hookrightarrow \{T, F\}$ is universal, in the sense that for every subset $i_A: A \hookrightarrow X$ in Set, there exists a unique function $\chi_A: X \to \{T, F\}$, namely the characteristic function of A, such that the following is a **pullback**:

Subobject classifiers

Definition.

A subobject classifier in a category \mathcal{E} is a monomorphism $\tau \colon * \hookrightarrow \Omega$ such that every monomorphism $i \colon A \hookrightarrow X$ in \mathcal{E} is the pullback of τ along a unique morphism $\chi_i \colon X \to \Omega$, called the characteristic morphism of i:

 Ω represents an object of generalized truth values.

If \mathcal{E} has a subobject classifier, has all finite limits and is cartesian closed, then \mathcal{E} is called an elementary topos. In particular, it has an

1-dimensional elementary topoi

Set is the archetypal elementary topos

$$\forall X \in Set$$

$$G_{T,X} : Set(X, 2) \xrightarrow{\text{pb along } T} Sub(X)$$
is a bijection

1-dimensional elementary topoi

Set is the archetypal elementary topos

$$\forall X \in Set$$
 $\mathcal{G}_{T,X} \colon Set(X,2) \xrightarrow{\text{pb along } T} Sub(X)$
is a bijection.

Definition.

Let \mathcal{C} be a 1-category with finite limits. A subobject classifier in \mathcal{C} is a map $\tau \colon 1 \hookrightarrow \Omega$ in \mathcal{C} such that $\forall X \in \mathcal{C}$ $\mathcal{G}_{T,X} \colon \mathcal{C}(X,\Omega) \to \mathsf{Sub}(X)$ given by pulling back τ is a bijection.

Properties of elementary topoi

Many properties can be deduced from this simple definition, including: finite colimits, power objects, locally cartesian closedness, extensivity, regularity, Barr-exactness, Heyting category.

2-dimensional elementary topoi

Cat should be the archetypal elementary 2-topos

Cat satisfies good properties: complete, cocomplete, cartesian closed, regular, Barr-exact.

2-dimensional elementary topoi

Cat should be the archetypal elementary 2-topos

Cat satisfies good properties: complete, cocomplete, cartesian closed, regular, Barr-exact.

But other properties are not fully satisfied:

- (i) we can only form categories of presheaves on a small category;
- (ii) only Conduché functors are exponentiable.

What about the classifier?

In dimension 2, Weber proposed to classify discrete opfibrations.

Their fibres are sets, thus of one dimension higher than the fibres of subsets.

Definition.

A **discrete opfibration** is a functor $p: \mathcal{E} \to \mathcal{B}$ such that for every $E \in \mathcal{E}$ every $f: p(E) \to B$ in \mathcal{B} has a unique lifting to E.

$$\begin{array}{ccc}
\mathcal{E} & E & --\frac{\exists! \overline{f}^{E}}{f} \rightarrow f_{*}E \\
\downarrow \rho & & \downarrow \rho & \downarrow \rho \\
B & p(E) & \xrightarrow{f} & B
\end{array}$$

Discrete opfibrations in a 2-category are defined by representability.

Cat should be the archetypal elementary 2-topos

Its 2-dimensional classification is given by the **category of elements** (**Grothendieck construction**), that exhibits equivalences

$$Cat(\mathcal{B}, Set) \simeq \mathcal{D}Op\mathcal{F}ib^{s}(\mathcal{B})$$

between copresheaves and discrete opfibrations with small fibres.

Set represents the object of generalized truth values, allowing for a more expressive internal logic.

There are two equivalent ways to capture the category of elements. It is given by the comma object

$$\begin{array}{c|c} & & & & \\ & & & \\ & &$$

 $\mathcal{B} \xrightarrow{-} \mathcal{S}et$ is an equivalence of categories.

There are two equivalent ways to capture the category of elements. It is given by the comma object

$$\begin{array}{c|c} \mathcal{E} & \longrightarrow & 1 \\ \text{disc opfib small fibres} & & \mathcal{I} & & \forall \mathcal{B} \in \mathcal{C}at \\ \mathcal{B} & -\frac{1}{\exists \chi_p} & & \mathcal{E}t & & \mathcal{B} \in \mathcal{C}at \\ \text{taking fibres} & & & \mathcal{B} \in \mathcal{C}at & & \mathcal{B} \in \mathcal{C}at \\ \mathcal{B} & -\frac{1}{\exists \chi_p} & & \mathcal{B} \in \mathcal{C}at & & \mathcal{B} \in \mathcal{C}at \\ \text{is an equivalence of categories.} & & \mathcal{B} \leftarrow \mathcal{B} = \mathcal{$$

$$\begin{array}{c|c} \mathcal{E} & \longrightarrow & 1 \\ & \forall p & \\ \text{disc opfib small fibres} & & \mathcal{C}at & \\ & & \mathcal{C}at & \mathcal{B} \in \mathcal{C}at \\ & & \mathcal{C}at & \mathcal{B}, \mathcal{S}et & \\ & & \mathcal{C}at & \mathcal{B}, \mathcal{S}et & \mathcal{D}Op\mathcal{F}ib^{s} & \mathcal{B} \\ & & \mathcal{C}at & \mathcal{B}, \mathcal{S}et & \mathcal{B} \\ & & \mathcal{C}at & \mathcal{B}, \mathcal{S}et & \mathcal{B} \\ & & \mathcal{C}at & \mathcal{B}, \mathcal{S}et & \mathcal{B} \\ & & \mathcal{C}at & \mathcal{B}, \mathcal{B} & \mathcal{B} \\ & & \mathcal{C}at & \mathcal{B}, \mathcal{B} & \mathcal{B} \\ & & \mathcal{C}at & \mathcal{B}, \mathcal{B} & \mathcal{B} \\ & & \mathcal{C}at & \mathcal{B}, \mathcal{B} & \mathcal{B} \\ & & \mathcal{C}at & \mathcal{B}, \mathcal{B} & \mathcal{B} \\ & & \mathcal{C}at & \mathcal{B}, \mathcal{B} & \mathcal{B} \\ & & \mathcal{C}at & \mathcal{B} & \mathcal{B} \\ & & \mathcal{C}at & \mathcal{B}, \mathcal{B} & \mathcal{B} \\ & & \mathcal{C}at & \mathcal{B}, \mathcal{B} & \mathcal{B} \\ & & \mathcal{C}at & \mathcal{B}, \mathcal{B} & \mathcal{B} \\ & & \mathcal{C}at & \mathcal{B}, \mathcal{B} & \mathcal{B} \\ & & \mathcal{C}at & & \mathcal{B} \\ & \mathcal{C}at & \mathcal{C}at & \mathcal{C}at \\ & \mathcal{C}at \\ & \mathcal{C}at & \mathcal{C}at \\ & \mathcal{C}at \\$$

And equivalently by the **pullback along the replacement** of ω :

Definition (M., stronger version of Weber's notion).

Let \mathcal{L} be a 2-category with comma objects, pullbacks along discrete opfibrations and terminal objects. Let P be a fixed pullback stable property for discrete opfibrations. A **good 2-classifier in** \mathcal{L} (w.r.t. P) is a morphism $\omega \colon 1 \to \Omega$ in \mathcal{L} such that for every $F \in \mathcal{L}$ the functor

$$\widehat{\mathcal{G}}_{\omega,F} \colon \mathcal{L}(F,\Omega) \to \mathcal{D}Op\mathcal{F}ib(F)$$

given by taking comma objects from ω forms an equivalence of categories when restricting the codomain to the full subcategory $\mathcal{DOpFib}^{P}(F)$ on the discrete optibrations that satisfy P.

Reduction of 2-classifiers to dense generators

Definition.

A 2-functor $I: \mathcal{Y} \underset{\mathrm{ff}}{\hookrightarrow} \mathcal{L}$ is **dense** if the restricted Yoneda embedding

$$\widetilde{I}: \ \mathcal{L} \longrightarrow [\mathcal{Y}^{op}, \mathcal{C}at]$$
 $F \mapsto \mathcal{L}(I(-), F)$

is fully faithful.

Equivalently, every $F \in \mathcal{L}$ is an *I*-absolute (i.e. preserved by \widetilde{I}) 2-colimit of a diagram that factors through \mathcal{Y} .

Reduction of 2-classifiers to dense generators

Definition.

A 2-functor $I \colon \mathcal{Y} \underset{\mathsf{ff}}{\hookrightarrow} \mathcal{L}$ is **dense** if the restricted Yoneda embedding

$$\widetilde{I}: \ \mathcal{L} \longrightarrow [\mathcal{Y}^{\text{op}}, \mathcal{C}at]$$
 $F \mapsto \mathcal{L}(I(-), F)$ is fully faithful.

Equivalently, every $F \in \mathcal{L}$ is an *I*-absolute (i.e. preserved by \overline{I}) 2-colimit of a diagram that factors through \mathcal{Y} .

Example.

Representables form a dense generator $y: C \to [C^{op}, Cat]$ of **2-presheaves**. Every 2-presheaf is a weighted 2-colimit of representables.

Reduction of 2-classifiers to dense generators

Theorem (M.).

Let $I: \mathcal{Y} \hookrightarrow_{\mathrm{ff}} \mathcal{L}$ be dense and consider $\omega: 1 \to \Omega$ in \mathcal{L} . **TFAE**:

- (i) ω is a good 2-classifier in \mathcal{L} , i.e. $\forall F \in \mathcal{L}$ $\widehat{\mathcal{G}}_{\omega,F}$ is an equivalence;
- (ii) $\forall Y \in \mathcal{Y} \mid \widehat{\mathcal{G}}_{\omega,Y}$ is an equivalence and a certain operation of normalization is possible.

M. 2-classifiers via dense generators and Hofmann-Streicher universe in stacks, *Canadian Journal of Mathematics*, 2024.

Reduction applied to Cat

Example.

The singleton category 1 is dense in Cat. So we can just look at the classification over 1, where we clearly have an equivalence.

$$\widehat{\mathcal{G}}_{\omega,1}$$
: $Cat(1,Set) \stackrel{\sim}{\longrightarrow} \mathcal{DOpFib}^{s}(1) \cong Set$

We deduce from this trivial observation that the category of elements construction is fully faithful and classifies precisely all discrete opfibrations with small fibres.

2-categories of stacks: Grothendieck 2-topoi

Definition (Idea).

A stack is a bicategorical sheaf. It is a 2-functor $F: \mathcal{C}^{op} \to \mathcal{C}at$ such that, for every $C \in \mathcal{C}$ and covering sieve $S \in J(C)$, every assignment

$$(D \xrightarrow{f} C) \in S \longmapsto M_f \in F(D)$$

$$(D' \xrightarrow{g} D \xrightarrow{f} C) \longmapsto \varphi^{f,g} \colon g^*M_f \cong M_{f \circ g}$$

with the $\varphi^{f,g}$ satisfying the cocycle condition can be **glued into a global** $M \in F(C)$ with coherent isomorphisms $\psi^f : f^*M \cong M_f$.

2-categories of stacks: Grothendieck 2-topoi

Definition (Idea).

A stack is a bicategorical sheaf. It is a 2-functor $F: \mathcal{C}^{op} \to \mathcal{C}at$ such that, for every $C \in \mathcal{C}$ and covering sieve $S \in J(C)$, every assignment

$$(D \xrightarrow{f} C) \in S \longmapsto M_f \in F(D)$$

$$(D' \xrightarrow{g} D \xrightarrow{f} C) \longmapsto \varphi^{f,g} \colon g^*M_f \cong M_{f \circ g}$$

with the $\varphi^{f,g}$ satisfying the cocycle condition can be **glued into a global** $M \in F(C)$ with coherent isomorphisms $\psi^f : f^*M \cong M_f$.

Moreover F is required to be a sheaf on morphisms, i.e. we can glue matching families of morphisms $f^*X \to f^*Y$ in F(D) in a unique way into global morphisms $X \to Y$ in F(C).

Let C be a category and consider $L = [C^{op}, Cat]$. Representables form a dense generator $y: C^{op} \to Cat$, so we can just look at

$$\widehat{\mathcal{G}}_{\omega,y(\mathcal{C})} \colon [\mathcal{C}^{\mathsf{op}}, \mathcal{C}\!\mathit{at}](\mathsf{y}(\mathcal{C}), \Omega) \to \mathcal{D}\!\mathit{Op}\hspace{.01in} \mathcal{F}\!\mathit{ib}^{\,\mathsf{s}}(\mathsf{y}(\mathcal{C}))$$

We want all these functors to be equivalences of categories. So the **Yoneda lemma forces a good 2-classifier** Ω to be, up to equivalence,

$$C \stackrel{\Omega}{\mapsto} \mathcal{D}Op\mathcal{F}ib^{s}(y(C))$$

 $\omega \colon \mathbf{1} \to \Omega$ picks the identity on every component.

However, this Ω is only a pseudofunctor, and it is not clear that it lands in small categories.

Indexed Grothendieck construction

Theorem (Caviglia–M.).

For every 2-functor $F \colon \mathcal{A} \to \mathcal{C}\!\mathit{at}$, there is a pseudonatural equivalence

$$Op\mathcal{F}ib_{[\mathcal{A},Cat]}(F)\simeq \left[\int F,Cat\right]$$

between split optibrations in $[\mathcal{A}, \mathcal{C}at]$ over F and 2-copresheaves on the Grothendieck construction $\int F$ of F.

This restricts to a pseudonatural equivalence

$$\mathcal{D}Op\mathcal{F}ib^{s}_{[\mathcal{A},\mathcal{C}at]}(F)\simeq \Big[\int F,\mathcal{S}et\Big].$$

This is a 2-dimensional generalization of the fundamental theorem of elementary topos theory, in the Grothendieck topos case.

Caviglia and M. Indexed Grothendieck construction, TAC, 2024.

Theorem (M.).

$$\begin{array}{ccc}
\widetilde{\Omega}: & C^{\text{op}} & \longrightarrow & Cat \\
\hline
C & \mapsto & \left[\left(C/C\right)^{\text{op}}, Set\right] \\
\left(C \stackrel{f}{\leftarrow} D\right) & \mapsto & -\circ (f \circ =)^{\text{op}},
\end{array}$$

equipped with $\widetilde{\omega} \colon 1 \to \overline{\Omega}$ that picks the constant at 1 presheaf on every component, is a good 2-classifier in [C^{op} , Cat] that classifies all discrete optibrations with small fibres.

M. 2-classifiers via dense generators and Hofmann-Streicher universe in stacks, *Canadian Journal of Mathematics*, 2024.

The proof actually involves the bicategorical classification process of $\Omega: C \mapsto \mathcal{D}Op\mathcal{F}ib^s(y(C))$

$$\widehat{\mathcal{G}}_{\omega, \mathsf{y}(\mathcal{C})} \colon \mathsf{Ps} \big[\mathcal{C}^{\mathsf{op}}, \mathcal{CAT} \big] (\mathsf{y}(\mathcal{C}), \Omega) \to \mathcal{D} Op \mathcal{F} ib^{\,\mathsf{s}}_{\,\,\,[\mathcal{C}^{\mathsf{op}}, \mathcal{C}at]} (\mathsf{y}(\mathcal{C})) = \Omega(\mathcal{C})$$

which is isomorphic to the Yoneda lemma's map and is thus an equivalence.

The proof actually involves the bicategorical classification process of $\Omega: C \mapsto \mathcal{D}Op\mathcal{F}ib^s(y(C))$

$$\widehat{\mathcal{G}}_{\omega,\mathsf{y}(C)} \colon \mathsf{Ps} \Big[\mathcal{C}^{\mathsf{op}}, \mathcal{CAT} \Big] (\mathsf{y}(C), \Omega) \to \mathcal{D} Op \mathcal{F} ib^{\,\mathsf{s}}_{\,\,[\mathcal{C}^{\mathsf{op}}, \mathcal{C}at]} (\mathsf{y}(C)) = \Omega(C)$$

which is isomorphic to the Yoneda lemma's map and is thus an equivalence.

Idea of the normalization process:

change the fibre $(\psi_D^{C,X})_{D \xrightarrow{f} C}$ into the fibre $(\varphi_D)_{F(f)(X)}$ (fibres of φ are global).

Restricting Ω to a good 2-classifier in stacks

Consider $i: St(C, J) \subseteq [C^{op}, Cat]$ the full 2-subcategory on stacks. We restrict $\widetilde{\omega}: 1 \to \widetilde{\Omega}$ to a good 2-classifier in stacks.

We proved with a general argument that it is enough to find $\Omega_J \in \mathcal{S}t(\mathcal{C},J)$ and $\ell \colon i(\Omega_J) \overset{\boldsymbol{\leftarrow}}{\hookrightarrow} \widetilde{\Omega}$ chronic such that, given $\varphi \colon G \to F$ a discrete opfibration in $\mathcal{S}t(\mathcal{C},J)$ with small fibres

Then ω_J : $1 \to \Omega_J$ is a good 2-classifier in $\mathcal{S}t(\mathcal{C},J)$.

A good 2-classifier in stacks

Theorem (M.).

$$\Omega_{J}: \qquad C^{\text{op}} \longrightarrow Cat$$

$$C \mapsto Sh(C/C,J) \subseteq [(C/C)^{\text{op}}, Set]$$

$$(C \stackrel{f}{\leftarrow} D) \mapsto -\circ (f \circ =)^{\text{op}},$$

equipped with ω_J : 1 $\to \Omega_J$ that picks the constant at 1 sheaf on every component, is a good 2-classifier in St(C,J) that classifies all discrete optibrations with small fibres.

This also solves a problem posed by Hofmann and Streicher when attempting to lift Grothendieck universes to sheaves.

M. 2-classifiers via dense generators and Hofmann-Streicher universe in stacks, *Canadian Journal of Mathematics*, 2024.

Other possible axioms of elementary 2-topos

Definition (Weber).

Let $\mathcal K$ be a 2-category. A duality involution for $\mathcal K$ is an involution 2-functor $(-)^\circ\colon \mathcal K^{\operatorname{co}} \to \mathcal K$ equipped with pseudonatural equivalences of categories

$$\mathcal{DF}ib_{\mathcal{K}}(A\times B,C)\simeq \mathcal{DF}ib_{\mathcal{K}}(A,B^{\circ}\times C)$$

 $(-)^{op} \colon \mathcal{C}at^{co} \to \mathcal{C}at$ is a duality involution for $\mathcal{C}at$.

For presheaves on a 1-category $\mathcal C$ (and stacks over a site $\mathcal C$), one can consider the pointwise opposite: the opposite of $F\colon \mathcal C^{\operatorname{op}}\to \mathcal Cat$ is

$$C^{\text{op}} \cong C^{\text{coop}} \xrightarrow{F^{\text{co}}} Cat^{\text{co}} \xrightarrow{(-)^{\text{op}}} Cat$$

But for presheaves on a 2-category \mathcal{L} it's trickier.

Properties of Grothendieck 2-toposes

Proposition (M.).

The 2-category St(C,J) of stacks has all flexible limits (thus all comma objects and the terminal object) and all pullbacks along discrete optibrations, calculated in $[C^{op}, Cat]$ and hence pointwise.

It looks like flexible limits are the right ones to consider in the definition of elementary 2-topos.

Properties of Grothendieck 2-toposes

Proposition (M.).

The 2-category St(C,J) of stacks has all flexible limits (thus all comma objects and the terminal object) and all pullbacks along discrete optibrations, calculated in $[C^{op}, Cat]$ and hence pointwise.

It looks like flexible limits are the right ones to consider in the definition of elementary 2-topos.

The codomain $\Omega_J \colon C \mapsto \mathcal{Sh}(C/C,J)$ of the good 2-classifier in $\mathcal{S}t(C,J)$ is probably an internal topos. (In dimension 1 we have that Ω is always an internal Heyting algebra). Weber has already shown internal cartesian closedness (with some assumptions).