Aspects of 2-dimensional Elementary Topos Theory

Luca Mesiti

University of Leeds
CT2024 Santiago de Compostela

24/06/2024

Set is the archetypal elementary topos

$$\forall X \in Set$$

$$G_{T,X} : Set(X, 2) \xrightarrow{\text{pb along } T} Sub(X)$$

$$\Rightarrow \{T, F\} = 2 \quad \text{is a bijection.}$$

Set is the archetypal elementary topos

$$\forall X \in Set$$
 $G_{T,X} : Set(X, 2) \xrightarrow{\text{pb along } T} Sub(X)$
is a bijection.

Definition.

Let \mathcal{C} be a 1-category with finite limits. A subobject classifier in \mathcal{C} is a map $\tau \colon 1 \hookrightarrow \Omega$ in \mathcal{C} such that $\forall X \in \mathcal{C}$ $\mathcal{G}_{T,X} \colon \mathcal{C}(X,\Omega) \to \mathsf{Sub}(X)$ given by pulling back τ is a bijection.

In dimension 2, Weber proposed to classify discrete opfibrations.

Their fibres are sets, thus of one dimension higher than the fibres of subsets.

Definition.

A **discrete opfibration** is a functor $p \colon \mathcal{E} \to \mathcal{B}$ such that for every $E \in \mathcal{E}$ every $f \colon p(E) \to B$ in \mathcal{B} has a unique lifting to E.

$$\begin{array}{ccc}
\mathcal{E} & E & -\frac{\exists ! \overline{f}^{E}}{f} \rightarrow f_{*}E \\
\downarrow \rho & & \downarrow \rho & \downarrow \rho \\
B & p(E) & \xrightarrow{f} & B
\end{array}$$

Discrete opfibrations in a 2-category are defined by representability.

Cat is the archetypal elementary 2-topos

Its 2-dimensional classification is given by the **category of elements** (**Grothendieck construction**), that exhibits equivalences

$$Cat(\mathcal{B}, Set) \simeq \mathcal{D}Op\mathcal{F}ib^{s}(\mathcal{B})$$

between copresheaves and discrete opfibrations with small fibres.

Cat is the archetypal elementary 2-topos

Its 2-dimensional classification is given by the category of elements (Grothendieck construction), that exhibits equivalences

$$Cat(\mathcal{B}, Set) \simeq \mathcal{D}Op\mathcal{F}ib^{s}(\mathcal{B})$$

between copresheaves and discrete optibrations with small fibres.

The category of elements is equivalently given by the **comma object**

$$\begin{array}{c|c} \mathcal{E} & \longrightarrow & 1 \\ & \forall p \\ \text{disc opfib small fibres} & & & \mathcal{E} &$$

is an equivalence of categories.

Definition (M., stronger version of Weber's notion).

Let \mathcal{L} be a 2-category with comma objects, pullbacks along discrete opfibrations and terminal objects. Let P be a fixed pullback stable property for discrete opfibrations. A **good 2-classifier in** \mathcal{L} (w.r.t. P) is a morphism $\omega \colon 1 \to \Omega$ in \mathcal{L} such that for every $F \in \mathcal{L}$ the functor

$$\widehat{\mathcal{G}}_{\omega,F} \colon \mathcal{L}(F,\Omega) \to \mathcal{D}Op\mathcal{F}ib(F)$$

given by taking comma objects from ω forms an equivalence of categories when restricting the codomain to the full subcategory $\mathcal{D}Op\mathcal{F}ib^{P}(F)$ on the discrete optibrations that satisfy P.

Dense generators

Definition.

A 2-functor $I: \mathcal{Y} \underset{\mathsf{ff}}{\hookrightarrow} \mathcal{L}$ is **dense** if the restricted Yoneda embedding

$$\widetilde{I}: \ \mathcal{L} \longrightarrow [\mathcal{Y}^{op}, \mathcal{C}at]$$
 $F \mapsto \mathcal{L}(I(-), F)$

is fully faithful.

Equivalently, every $F \in \mathcal{L}$ is an *I*-absolute (i.e. preserved by \widetilde{I}) 2-colimit of a diagram that factors through \mathcal{Y} .

Dense generators

Definition.

A 2-functor $I: \mathcal{Y} \underset{\mathsf{ff}}{\hookrightarrow} \mathcal{L}$ is **dense** if the restricted Yoneda embedding

$$\widetilde{I}: \ \mathcal{L} \longrightarrow [\mathcal{Y}^{\text{op}}, \mathcal{C}at]$$
 $F \mapsto \mathcal{L}(I(-), F)$ is fully faithful.

Equivalently, every $F \in \mathcal{L}$ is an *I*-absolute (i.e. preserved by \widetilde{I}) 2-colimit of a diagram that factors through \mathcal{Y} .

Example.

Representables form a dense generator y: $C \rightarrow [C^{op}, Cat]$ of **2-presheaves**. Every 2-presheaf is a weighted 2-colimit of representables.

Reduction of 2-classifiers to dense generators

Theorem (M.).

Let $I: \mathcal{Y} \hookrightarrow_{\mathrm{ff}} \mathcal{L}$ be dense and consider $\omega: \mathbf{1} \to \Omega$ in \mathcal{L} . **TFAE**:

- (i) ω is a good 2-classifier in \mathcal{L} , i.e. $\forall F \in \mathcal{L}$ $\widehat{\mathcal{G}}_{\omega,F}$ is an equivalence;
- (ii) $\forall Y \in \mathcal{Y} \mid \widehat{\mathcal{G}}_{\omega,Y}$ is an equivalence and a certain operation of normalization is possible.

M. 2-classifiers via dense generators and Hofmann-Streicher universe in stacks, *arXiv:2401.16900*, 2024.

Problem: colimits in 2-dimensional slices

Theorem (M.).

Let \mathcal{L} be a 2-category and $M \in \mathcal{L}$. Then the 2-functor dom: $\mathcal{L}/_{lax} M \to \mathcal{L}$ is a 2-colim-fibration. As a consequence,

$$\begin{array}{ccc}
\operatorname{colim}^W F & \operatorname{oplax}^{\operatorname{cart}} \operatorname{-colim}^{\Delta 1}(F \circ \mathcal{G}(W)) \\
\downarrow q & \downarrow q & = \operatorname{oplax}^{\operatorname{cart}} \operatorname{-colim}^{\Delta 1} D^q \\
M & M
\end{array}$$

in the lax slice $\mathcal{L}/_{lax}$ M. Here, D^q is the 2-diagram corresponding to the cartesian-marked oplax cocone associated to q.

M. Colimits in 2-dimensional slices, arXiv:2305.01494, 2023.

Reduction applied to Cat

Example.

The singleton category 1 is dense in Cat. So we can just look at the classification over 1, where we clearly have an equivalence.

$$\widehat{\mathcal{G}}_{\omega,1}$$
: $Cat(1,Set) \stackrel{\sim}{\longrightarrow} \mathcal{D}Op\mathcal{F}ib^{s}(1) \cong Set$

We deduce from this trivial observation that the category of elements construction is fully faithful and classifies precisely all discrete opfibrations with small fibres.

Stacks: Grothendieck 2-topoi

Definition (Idea).

A stack is a bicategorical sheaf. It is a 2-functor $F: \mathcal{C}^{op} \to \mathcal{C}at$ such that, for every $C \in \mathcal{C}$ and covering sieve $S \in J(C)$, every assignment

$$(D \xrightarrow{f} C) \in S \longmapsto M_f \in F(D)$$

$$(D' \xrightarrow{g} D \xrightarrow{f} C) \longmapsto \varphi^{f,g} \colon g^* M_f \cong M_{f \circ g}$$

with the $\varphi^{f,g}$ satisfying the cocycle condition can be **glued into a global** $M \in F(C)$ with coherent isomorphisms $\psi^f : f^*M \cong M_f$.

Stacks: Grothendieck 2-topoi

Definition (Idea).

A stack is a bicategorical sheaf. It is a 2-functor $F: \mathcal{C}^{op} \to \mathcal{C}at$ such that, for every $C \in \mathcal{C}$ and covering sieve $S \in J(C)$, every assignment

$$(D \xrightarrow{f} C) \in S \longmapsto M_f \in F(D)$$

$$(D' \xrightarrow{g} D \xrightarrow{f} C) \longmapsto \varphi^{f,g} \colon g^* M_f \cong M_{f \circ g}$$

with the $\varphi^{f,g}$ satisfying the cocycle condition can be **glued into a global** $M \in F(C)$ with coherent isomorphisms $\psi^f : f^*M \cong M_f$.

Moreover F is required to be a sheaf on morphisms, i.e. we can glue matching families of morphisms $f^*X \to f^*Y$ in F(D) in a unique way into global morphisms $X \to Y$ in F(C).

Let C be a category and consider $L = [C^{op}, Cat]$. Representables form a dense generator $y: C^{op} \to Cat$, so we can just look at

$$\widehat{\mathcal{G}}_{\omega,y(C)}\colon [\mathcal{C}^{\mathsf{op}},\mathcal{C}\!\mathit{at}](\mathsf{y}(C),\Omega)\to \mathcal{D}\!\mathit{Op}\!\,\mathcal{F}\!\mathit{ib}^{\,\mathsf{s}}(\mathsf{y}(C))$$

We want all these functors to be equivalences of categories. So the **Yoneda lemma forces a good 2-classifier** Ω to be, up to equivalence,

$$C \stackrel{\Omega}{\mapsto} \mathcal{D}Op\mathcal{F}ib^{s}(y(C))$$

 $\omega \colon \mathbf{1} \to \Omega$ picks the identity on every component.

However, this Ω is only a pseudofunctor, and it is not clear that it lands in small categories.

Indexed Grothendieck construction

Theorem (Caviglia–M.).

For every 2-functor $F: \mathcal{A} \to \mathcal{C}at$, there is a pseudonatural equivalence

$$Op\mathcal{F}ib_{\left[\mathcal{A},Cat\right]}(F)\simeq\left[\int\!F,Cat\right]$$

between split optibrations in $[\mathcal{A}, \mathcal{C}at]$ over F and 2-copresheaves on the Grothendieck construction $\int F$ of F.

This restricts to a pseudonatural equivalence

$$\mathcal{D}Op\mathcal{F}ib^{s}_{[\mathcal{A},\mathcal{C}at]}(F)\simeq \left[\int F,\mathcal{S}et\right].$$

This is a 2-dimensional generalization of the fundamental theorem of elementary topos theory, in the Grothendieck topos case.

Caviglia and M. Indexed Grothendieck construction, arXiv:2307.16076, 2023.

Theorem (M.).

$$\widetilde{\Omega}: \quad C^{\text{op}} \longrightarrow Cat$$

$$C \mapsto \left[\left(\frac{C}{C}\right)^{\text{op}}, Set\right]$$

$$\left(C \stackrel{f}{\leftarrow} D\right) \mapsto -\circ (f \circ =)^{\text{op}},$$

equipped with $\widetilde{\omega}$: $1 \to \Omega$ that picks the constant at 1 presheaf on every component, **is a good 2-classifier in** [C^{op} , Cat] that classifies all discrete opfibrations with small fibres.

M. 2-classifiers via dense generators and Hofmann-Streicher universe in stacks, *arXiv:2401.16900*, 2024.

The proof actually involves the bicategorical classification process of $\Omega: C \mapsto \mathcal{D}Op\mathcal{F}ib^s(y(C))$

$$\widehat{\mathcal{G}}_{\omega, \mathsf{y}(\mathcal{C})} \colon \mathsf{Ps} \big[\mathcal{C}^{\mathsf{op}}, \mathcal{CAT} \big] (\mathsf{y}(\mathcal{C}), \Omega) \to \mathcal{D} Op \mathcal{F} ib^{\,\mathsf{s}}_{\,\,\,[\mathcal{C}^{\mathsf{op}}, \mathcal{C}at]} (\mathsf{y}(\mathcal{C})) = \Omega(\mathcal{C})$$

which is isomorphic to the Yoneda lemma's map and is thus an equivalence.

The proof actually involves the bicategorical classification process of $\Omega: C \mapsto \mathcal{D}Op\mathcal{F}ib^s(y(C))$

$$\widehat{\mathcal{G}}_{\omega,\mathsf{y}(C)} \colon \mathsf{Ps} \Big[\mathcal{C}^{\mathsf{op}}, \mathcal{CAT} \Big] (\mathsf{y}(C), \Omega) \to \mathcal{D} Op \mathcal{F} ib^{\,\mathsf{s}}_{\,\,[\mathcal{C}^{\mathsf{op}}, \mathcal{C}at]} (\mathsf{y}(C)) = \Omega(C)$$

which **is isomorphic to the Yoneda lemma's map** and is thus an equivalence.

Idea of the normalization process:

change the fibre $(\psi_D^{C,X})_{D \xrightarrow{f} C}$ into the fibre $(\varphi_D)_{F(f)(X)}$ (fibres of φ are global).

Restricting Ω to a good 2-classifier in stacks

Consider $i: St(C, J) \subseteq [C^{op}, Cat]$ the full 2-subcategory on stacks. We restrict $\widetilde{\omega}: 1 \to \widetilde{\Omega}$ to a good 2-classifier in stacks.

We proved with a general argument that it is enough to find $\Omega_J \in \mathcal{S}t(\mathcal{C},J)$ and $\ell \colon i(\Omega_J) \overset{\boldsymbol{\leftarrow}}{\hookrightarrow} \widetilde{\Omega}$ chronic such that, given $\varphi \colon G \to F$ a discrete optibration in $\mathcal{S}t(\mathcal{C},J)$ with small fibres

Then $\omega_J: \mathbf{1} \to \Omega_J$ is a good 2-classifier in $\mathcal{S}t(\mathcal{C}, J)$.

A good 2-classifier in stacks

Theorem (M.).

$$\Omega_{J}: \qquad C^{\text{op}} \longrightarrow Cat$$

$$C \mapsto Sh(C/C,J) \subseteq [(C/C)^{\text{op}}, Set]$$

$$(C \stackrel{f}{\leftarrow} D) \mapsto -\circ (f \circ =)^{\text{op}},$$

equipped with ω_J : 1 $\to \Omega_J$ that picks the constant at 1 sheaf on every component, is a good 2-classifier in St(C,J) that classifies all discrete optibrations with small fibres.

This also solves a problem posed by Hofmann and Streicher when attempting to lift Grothendieck universes to sheaves.

M. 2-classifiers via dense generators and Hofmann-Streicher universe in stacks, *arXiv:2401.16900*, 2024.

What's next?

- More examples of 2-classifiers
- A refined notion of elementary 2-topos
- 2-dimensional Grothendieck topologies
- 2-dimensional fundamental theorem of elementary topos theory
- The logic of an elementary 2-topos