Colimits in 2-dimensional slices

Luca Mesiti

University of Leeds PSSL 107 in Athens

02/04/2023

Colimits in 1-dimensional slices

Theorem.

Let C be a category and let $M \in C$.

dom: $C/M \to C$ preserves, reflects and lifts uniquely all the colimits.

$$\begin{array}{ccc}
\operatorname{colim}_{A} D(A) & & D(A) \\
\downarrow q & \cong \operatorname{colim}_{A} & \downarrow q \circ i_{A} & \operatorname{in} C/M, \\
M & & M
\end{array}$$

where the i_A 's are the inclusions of the components D(A) in their colimit.

Colimits in 1-dimensional slices

Theorem.

Let C be a category and let $M \in C$.

dom: $C/M \to C$ preserves, reflects and lifts uniquely all the colimits.

$$\begin{array}{ccc}
\operatorname{colim}_{A} D(A) & & D(A) \\
\downarrow q & \cong \operatorname{colim}_{A} & \downarrow q \circ i_{A} & \operatorname{in} C/M, \\
M & & M
\end{array}$$

where the i_A 's are the inclusions of the components D(A) in their colimit.

This is based on the fact that a cocone on M is the same thing as a diagram in \mathcal{C}/M .

Colimits in 2-dimensional slices

Let \mathcal{E} be a 2-category and let $M \in \mathcal{E}$.

Consider $F: \mathcal{A} \to \mathcal{E}$ and $W: \mathcal{A}^{op} \to \mathcal{CAT}$ such that colim $^W F$ exists.

Take then q: colim^W $F \rightarrow M$, or equivalently

$$\nu^q \colon W \Rightarrow \mathcal{E}(F(-), M)$$
.

We want to express q as a 2-colimit in a 2-dimensional slice of ${\mathcal E}$ on M.

Colimits in 2-dimensional slices

Let \mathcal{E} be a 2-category and let $M \in \mathcal{E}$.

Consider $F: \mathcal{A} \to \mathcal{E}$ and $W: \mathcal{A}^{op} \to \mathcal{CAT}$ such that colim $^W F$ exists.

Take then q: colim^W $F \rightarrow M$, or equivalently

$$\nu^q \colon W \Rightarrow \mathcal{E}(F(-), M)$$
.

We want to express q as a 2-colimit in a 2-dimensional slice of ${\mathcal E}$ on M.

This is essentially a matter of selecting a cocone out of the bunch of cocones that form the weighted 2-cocylinder ν^q .

We reduce weighted 2-colimits to oplax normal conical ones!

$$\mathsf{colim}^W F \cong \mathsf{oplax}^\mathsf{n} \operatorname{\mathsf{-colim}}^{\Delta 1}(F \circ \mathcal{G}(W))$$

 $\mathcal{G}(W): \int W o \mathcal{A}$ is the 2-Set-enriched Grothendieck construction of W.

And ν^q corresponds to an oplax normal 2-cocone

$$\lambda^q \colon \Delta 1 \xrightarrow[\mathsf{oplax}^n]{} \mathcal{E}\left((F \circ \mathcal{G}(W))(-), M\right) \colon \left(\int W\right)^\mathsf{op} \to \mathcal{CAT}.$$

"Normal": for every (f, id) in $(\int W)^{op}$ the structure 2-cell $\lambda^q_{(f, id)} = id$.

We can reorganize λ^q as the 2-diagram

$$L^{q}: \int W \longrightarrow \mathcal{E}/_{lax} M$$

$$(A,X) \qquad \qquad F(A) \xrightarrow{F(f)} F(B)$$

$$\downarrow^{(f,\alpha)} \mapsto \qquad \lambda^{q}_{(A,X)} \xrightarrow{\lambda^{q}_{f,\alpha}} \lambda^{q}_{(B,X')}$$

$$M$$

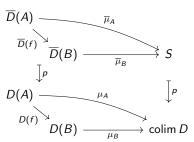
We will see later that

$$\begin{array}{ccc} \mathsf{colim}^W F & \mathsf{oplax}^\mathsf{n} \text{-} \mathsf{colim}^{\Delta 1} (F \circ \mathcal{G}(W)) \\ & \downarrow q & & \mathsf{oplax}^\mathsf{n} \text{-} \mathsf{colim}^{\Delta 1} L^q \\ & M & & M \end{array}$$

Colim-fibrations

Definition (M.).

A functor $p \colon \mathcal{S} \to \mathcal{C}$ is a **colim-fibration** if for every $S \in \mathcal{S}$ and every universal cocone μ that exhibits $p(S) = \operatorname{colim} D$, there exists a unique pair $(\overline{D}, \overline{\mu})$ with $\overline{D} \colon \mathcal{A} \to \mathcal{S}$ a diagram and $\overline{\mu}$ a universal cocone that exhibits $S = \operatorname{colim} \overline{D}$ such that $p \circ \overline{D} = D$ and $p \circ \overline{\mu} = \mu$.

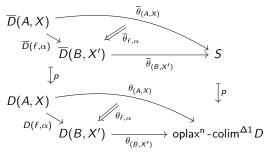


Equivalently, p is a discrete fibration that reflects all the colimits.

2-colim-fibrations

Discrete fibrations \rightsquigarrow 2-Set-fibrations.

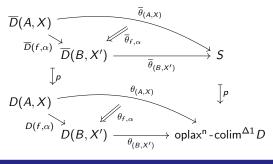
They are fibrations that also uniquely lift 2-cells to a fixed domain 1-cell.



2-colim-fibrations

Discrete fibrations \rightsquigarrow 2-Set-fibrations.

They are fibrations that also uniquely lift 2-cells to a fixed domain 1-cell.

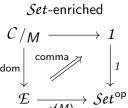


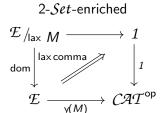
Definition (M.).

 $p \colon \mathcal{S} \to \mathcal{E}$ is a 2-**colim-fibration** if it is a cloven 2- $\mathcal{S}et$ -fibration such that, for every $\mathcal{S}, \mathcal{D}, \theta$, the pair $(\overline{\mathcal{D}}, \overline{\theta})$ exhibits $\mathcal{S} = \operatorname{oplax}^n \operatorname{-colim}^{\Delta 1} \overline{\mathcal{D}}$.

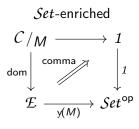
Equiv., a cloven 2-Set-fibration that reflects all the cartesian 2-colimits.

Colimits in 2-dimensional slices, via 2-colim-fibrations





Colimits in 2-dimensional slices, via 2-colim-fibrations



Theorem (M.).

dom: $\mathcal{E}/_{\mathsf{lax}} \ _{M} \to \mathcal{E}$ is a 2-colim-fibration. As a consequence,

$$\begin{array}{ccc}
\operatorname{colim}^W F & & \operatorname{oplax}^{\operatorname{n}} - \operatorname{colim}^{\Delta 1} (F \circ \mathcal{G}(W)) \\
\downarrow q & & \downarrow q \\
M & & M
\end{array} = \operatorname{oplax}^{\operatorname{n}} - \operatorname{colim}^{\Delta 1} L^q$$

$$\overline{F \circ \mathcal{G}(W)}(A,X) = y(M)(\theta_{(A,X)})(q) = q \circ \theta_{(A,X)} = \lambda_{(A,X)}^q = L^q(A,X)$$

dom lifts 2-colimits of ${\mathcal F}$ -diagrams

Consider a marking $W: \mathcal{A}^{op} \to \mathcal{CAT}$ and a 2-diagram $D: \int W \to \mathcal{E}$. There is a bijection between oplax normal 2-cocones

$$\lambda \colon \Delta 1 \Longrightarrow_{\mathsf{oplax}^n} \mathcal{E}\left(D(-), M\right)$$

on M and 2-diagrams $\overline{D}\colon \int W \to \mathcal{E}/_{\mathsf{lax}} M$ such that for every morphism (f,id) in $\int W$ the triangle $\overline{D}(f,\mathsf{id})$ is filled with an identity.

dom lifts 2-colimits of ${\mathcal F}$ -diagrams

Consider a marking $W: \mathcal{A}^{op} \to \mathcal{CAT}$ and a 2-diagram $D: \int W \to \mathcal{E}$. There is a bijection between oplax normal 2-cocones

$$\lambda \colon \Delta 1 \Longrightarrow_{\mathsf{oplax}^n} \mathcal{E}\left(D(-), M\right)$$

on M and 2-diagrams $\overline{D}\colon \int W \to \mathcal{E}/_{\mathsf{lax}} M$ such that for every morphism (f,id) in $\int W$ the triangle $\overline{D}(f,\mathsf{id})$ is filled with an identity.

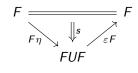
That is, \mathcal{F} -diagrams $\overline{D} \colon \int W \to \mathcal{E}/_{lax} M$, taking on $\mathcal{E}/_{lax} M = \int y(M)$ the canonical \mathcal{F} -category structure, with loose part $\mathcal{E}/_{lax} M$ itself and tight part the strict 2-slice $\mathcal{E}/_M$.

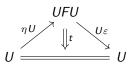
dom: $\mathcal{E}/_{\text{lax}} M \to \mathcal{E}$ lifts all the oplax normal 2-colimits of \mathcal{F} -diagrams, since an \mathcal{F} -diagram corresponds to an oplax normal 2-cocone, that induces a unique morphism $g\colon C\to M$.

Towards preservation of 2-colimits: lax adjunctions

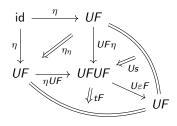
Definition (Gray).

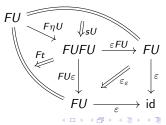
A **lax adjunction** from $F: \mathcal{A} \to \mathcal{B}$ to $U: \mathcal{B} \to \mathcal{A}$ is given by a lax natural unit $\eta: \operatorname{Id} \Rightarrow UF$, a lax natural counit $\varepsilon: FU \Rightarrow \operatorname{Id}$ and modifications





(lax triangular laws) such that both the swallowtails are identities:





Right semi-lax adjunction when ε is strictly 2-natural and s = id.

Strict when s and t are both identities, so triangular laws hold strictly.

A lax adjunction gives in particular oridinary adjunctions between homsets

$$\mathcal{B}(F(A), B) \xrightarrow{\perp_{\chi,\xi}} \mathcal{A}(A, U(B))$$

$$\chi_h = F(A) \xrightarrow{F(\eta_A)} F(U(F(A))) \qquad \downarrow_{\varepsilon_h} \qquad \downarrow_{\varepsilon_B} \qquad$$

And if the lax adjunction is right semi-lax then $T \circ S = id$.

Definition (Walker, M.).

A **loose lax** \mathcal{F} -adjunction is a lax adjunction $(F, U, \eta, \varepsilon, s, t)$ between the loose parts in which F and U are \mathcal{F} -functors and η and ε are loose strict/lax \mathcal{F} -natural transformations.

(**Tight**) lax \mathcal{F} -adjunction when η and ε have tight components.

Definition (M.).

Consider \mathcal{F} -functors $W: \mathcal{A}^{\mathsf{op}} \to \mathcal{F}$ and $H: \mathcal{A} \to \mathcal{S}$.

The **strict/oplax** \mathcal{F} -**colimit** of H weighted by W is $C \in \mathcal{S}$ with 2-natural

$$\mathcal{S}_{\lambda}\left(\mathcal{C},\mathcal{Q}
ight)\cong\left[\mathcal{A}_{\lambda}^{\mathsf{op}},\mathcal{CAT}
ight]_{\mathsf{oplax}^{\mathsf{n}}}\left(W_{\lambda},\mathcal{S}_{\lambda}\left(\mathcal{H}_{\lambda}(-),\mathcal{Q}
ight)
ight),$$

s.t. the "components" $\mu_A^{\lambda}(X)$'s of the universal oplax normal cocylinder, for $A \in \mathcal{A}$ and $X \in W_{\tau}(A)$, are tight and jointly detect tightness.

02/04/2023

Right semi-lax left \mathcal{F} -adjoints preserve colimits

Theorem (M.).

Right semi-lax loose left \mathcal{F} -adjoints preserve all the universal oplax normal 2-cocylinders for an \mathcal{F} -diagram which have tight "components", even if such "components" do not jointly detect tightness.

Right semi-lax (tight) left \mathcal{F} -adjoints preserve all the strict/oplax \mathcal{F} -colimits.

$$W \xrightarrow{\mu} \mathcal{S}(H(-),C) \xrightarrow{F} \mathcal{E}((F \circ H)(-),F(C))$$

$$\downarrow \sigma \qquad \qquad \downarrow \qquad \qquad \downarrow$$

dom preserves all the strict/oplax ${\mathcal F}$ -colimits

Theorem (M.).

 $\mathsf{dom} \colon \mathcal{E}/_{\mathsf{lax}} \mathrel{{M}} \to \mathcal{E} \text{ has a strict right semi-lax tight right } \mathcal{F}\text{-adjoint } U.$

As a consequence, dom preserves all the strict/oplax \mathcal{F} -colimits, but also all the universal oplax normal 2-cocones for an \mathcal{F} -diagram which have tight components.

For every $E \in \mathcal{E}$, we define

$$U(E) := (M \times E \xrightarrow{\operatorname{pr}_1} E)$$

$$\varepsilon_E \colon M \times E \xrightarrow{\operatorname{pr}_2} E$$

The counit ε_E is universal in a lax sense, reminiscent of Kan extensions.

Luca Mesiti Colimits in 2-dimensional slices 02/04/2023 13/15

Change of base between lax slices

Theorem (M.).

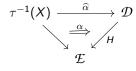
Let $\tau \colon \mathcal{E} o \mathcal{B}$ be a split Grothendieck opfibration. The pullback 2-functor

$$au^* \colon \mathcal{CAT} /_{\mathsf{lax}} \mathscr{B} o \mathcal{CAT} /_{\mathsf{lax}} \mathscr{E}$$

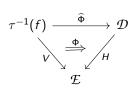
has a strict right semi-lax loose right $\mathcal F$ -adjoint au_* .

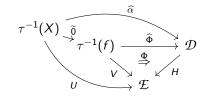
As a consequence, τ^* preserves all the universal oplax normal 2-cocylinders for an $\mathcal F$ -diagram which have tight "components".

For every $H \colon \mathcal{D} \to \mathcal{E}$, we define $\tau_* H$ as $\operatorname{pr}_1 \colon \mathcal{H} \to \mathcal{B}$, where the category \mathcal{H} has as objects pairs $(X, (\widehat{\alpha}, \alpha))$ with $X \in \mathcal{B}$ and



A morphism $(X,(\widehat{\alpha},\alpha)) \to (X',(\widehat{\beta},\beta))$ in \mathcal{H} is a pair $(f,(\widehat{\Phi},\Phi))$ with $f \colon X \to X'$ in \mathcal{B} and $(\widehat{\Phi}, \Phi)$ as below such that $\Phi * \widetilde{0} = \alpha$ and $\Phi * \widetilde{1} = \beta$





The counit is an evaluation: on every $H \colon \mathcal{D} \to \mathcal{E}$

$$\mathcal{N} \xrightarrow{\widehat{\varepsilon_H}} \mathcal{D}$$

$$\tau^* \tau_* H \xrightarrow{\widehat{\varepsilon_H}} H$$

$$\mathcal{E}$$

$$\widehat{\varepsilon_H}((X,(\widehat{lpha},lpha)),E)\coloneqq\widehat{lpha}(E)$$

$$\widehat{\varepsilon_H}((f,(\widehat{\Phi},\Phi)),g)\coloneqq\widehat{\Phi}(0\to 1,g)$$

$$(\varepsilon_H)_{((X,(\widehat{lpha},lpha)),E)}\coloneqq\alpha_E$$

Luca Mesiti Colimits in 2-dimensional slices