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Part I

Triangulated categories
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Triangles

Definition 1.1.

Let C be a category and let T be an automorphism. A triangle of C is a
sextuple (X ,Y ,Z , u, v ,w) where X ,Y ,Z are objects of C and u : X → Y ,
v : Y → Z , w : Z → T (X ) are morphisms of C.

A triangle is usually written as follows:

Z

X Y

w

u

v

or even
X Y Z T (X ).u v w
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Triangles

Definition 1.2.

Let (X ,Y ,Z , u, v ,w) and (X̃ , Ỹ , Z̃ , ũ, ṽ , w̃) be two triangles of C. A
morphism of triangles

(X ,Y ,Z , u, v ,w)→ (X̃ , Ỹ , Z̃ , ũ, ṽ , w̃)

is a triple of morphisms (f , g , h) forming a commutative diagram in C:

X Y Z T (X )

X̃ Ỹ Z̃ T (X̃ ).

u

f

v

g

w

h T (f )

ũ ṽ w̃
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Triangulated categories

Definition 1.3.

An additive category C is a triangulated category if it is equipped with

• an authomorfism T : C→ C, called the translation functor, and

• a collection of triangles (X ,Y ,Z , u, v ,w), called the exact triangles
(or distinguished triangles) of C,

such that the following axioms hold:
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Triangulated categories

TR1: • For each X object of C, the triangle (X ,X , 0, id, 0, 0) is exact.
• Every morphism u : X → Y can be embedded in an exact

triangle (X ,Y ,Z , u, v ,w).
• If (X ,Y ,Z , u, v ,w) is a triangle isomorphic to an exact triangle

(X̃ , Ỹ , Z̃ , ũ, ṽ , w̃), i.e.

X Y Z T (X )

X Y Z̃ T (X ),

u

∼=

v

∼=

w

∼= ∼=

u ṽ w̃

then (X ,Y ,Z , u, v ,w) is also exact.

Luca Mesiti Derived Categories and MCM modules 03/04/2020 06/04/2020 6 / 115



Triangulated categories

TR2: [Rotation] If (X ,Y ,Z , u, v ,w) is an exact triangle, then
(Y ,Z ,T (X ), v ,w ,−T (u)) and (T−1(Z ),X ,Y ,−T−1(w), u, v) are
exact triangles. Equivalently, (X ,Y ,Z , u, v ,w) is an exact triangle if
and only if (Y ,Z ,T (X ), v ,w ,−T (u)) is so.

TR3: [Morphisms] Given two exact triangles (X ,Y ,Z , u, v ,w) and
(X̃ , Ỹ , Z̃ , ũ, ṽ , w̃) with morphisms f : X → X̃ , g : Y → Ỹ such that
gu = ũf , then there exists a morphism h : Z → Z̃ such that (f , g , h)
is a morphism of triangles, i.e. the following diagram

X Y Z T (X )

X̃ Ỹ Z̃ T (X̃ )

u

f

v

g

w

h T (f )

ũ ṽ w̃

is commutative.
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Triangulated categories

TR4: [The octahedral axiom] Given exact triangles (X ,Y , Z̃ , u, j , ∂),
(Y ,Z , X̃ , v , a, i) and
(X ,Z , Ỹ , vu, b, δ) Z

X̃

Y Ỹ

X

Z̃

a
b

i

v

j

δ

vu

u

∂
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Triangulated categories

there exist morphisms f : Z̃ → Ỹ , g : Ỹ → X̃ such that
(Z̃ , Ỹ , X̃ , f , g ,T (j)i) is an exact triangle and such that in the following
octahedron Z

X̃

Y Ỹ

X

Z̃

a
b

T (j)i

i

v

j

∃ g

δ

vu

u

∂
∃ f
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Triangulated categories

we have:
i) the four exact triangles form four of the faces;

ii) the remaining four faces commute, i.e. ∂ = δf : Z̃ → X and
a = gb : Z → X̃ ;

iii) bv = fj : Y → Ỹ ;

iv) ig = uδ : Ỹ → Y .
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Triangulated categories

Remark 1.4.

From the axioms required to a triangulated category it follows rather easily
that

- If (X ,Y ,Z , u, v ,w) is an exact triangle, then

X Y Z T (X ).u v w

is a complex.

- If C is a triangulated category, then Cop is a triangulated category.
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Triangulated functors

Definition 1.5.

Let C and C̃ be two triangulated categories. An additive functor F : C→ C̃
is called a covariant (strict) triangulated functor if it commutes with
the translation functor and takes exact triangles into exact triangles.
F is called a contravariant (strict) triangulated functor if it takes exact
triangles into exact triangles with the arrows reversed and it sends the
translation functor into its inverse.
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Cohomological functors

Definition 1.6.

Let (C,T ) be a triangulated category and A be an abelian category.
An additive functor H : C→ A is called a covariant cohomological
functor if whenever (X ,Y ,Z , u, v ,w) is an exact triangle, the long
sequence

· · · H(T i (X )) H(T i (Y )) H(T i (Z )) H(T i+1(X )) · · ·H(T i (u)) H(T i (v)) H(T i (w)) H(T i+1(u))

is exact in A. We often write H i (−) for H(T i (−)), i ∈ Z.

One defines a contravariant cohomological functor by reversing the
arrows.
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Cohomological functors

Example 1.7.

Let C be a triangulated category and M an object of C. Then
HomC (M,−) and HomC (−,M) are cohomological functors on C.

Let (X ,Y ,Z , u, v ,w) be an exact triangle. First we show that

HomC (M,X ) HomC (M,Y ) HomC (M,Z )
Hom C (M,u) Hom C (M,v)

is exact. Since HomC (M, u) = u ◦ − and HomC (M, v) = v ◦ −, by
Remark 1.4 we have that

HomC (M, v)(HomC (M, u)(f )) = (vu)f = 0 for each f ∈ HomC (M,X ).
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Cohomological functors

Suppose now that g ∈ HomC (M,Y ) is such that vg = 0. Applying TR2
and TR3 to the exact triangles (M,M, 0, idM , 0, 0) and (X ,Y ,Z , u, v ,w)
we have the commutative diagram

M 0 T (M) T (M)

Y Z T (X ) T (Y ).

0

g

0

0

−T (idM)

h T (g)

v w −T (u)

Hence g = T−1(T (g)) = T−1(T (u)h) = uT−1(h). We conclude that
there exists a f = T−1(h) ∈ HomC (M,X ) such that g = uf . By TR2
(Y ,Z ,T (X ), v ,w ,−T (u)) and (T−1(Z ),X ,Y ,−T−1(w), u, v) are exact
triangles.
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Cohomological functors

Thus

HomC (M,Y ) HomC (M,Z ) HomC (M,T (X ))
Hom C (M,v) Hom C (M,w)

and

HomC (M,T−1(Z )) HomC (M,X ) HomC (M,Y )
Hom C (M,−T−1(w)) Hom C (M,u)

are exact. Using TR2 we obtain that HomC (M,−) is a covariant
cohomological functor.

A similar proof shows that HomC (−,M) is a contravariant cohomological
functor.

Luca Mesiti Derived Categories and MCM modules 03/04/2020 06/04/2020 16 / 115



Triangulated Five lemma

Proposition 1.8.

In a triangulated category, in the situation of TR3

X Y Z T (X )

X̃ Ỹ Z̃ T (X̃ )

u

f

v

g

w

h T (f )

ũ ṽ w̃

if f and g are isomorphisms, then h is also an isomorphism.

Suppose that f and g are isomorphisms. Applying HomC (Z̃ ,−), which is
cohomological by Example 1.7, we obtain a commutative diagram with
exact rows
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Triangulated Five lemma

HomC (Z̃ ,X ) HomC (Z̃ ,Y ) HomC (Z̃ ,Z) HomC (Z̃ ,T (X )) HomC (Z̃ ,T (Y ))

HomC (Z̃ , X̃ ) HomC (Z̃ , Ỹ ) HomC (Z̃ , Z̃) HomC (Z̃ ,T (X̃ )) HomC (Z̃ ,T (Ỹ )).

Hom C (Z̃ ,f ) Hom C (Z̃ ,g) Hom C (Z̃ ,h) Hom C (Z̃ ,T (f )) Hom C (Z̃ ,T (g))

Since f , g , T (f ) and T (g) are isomorphisms, HomC (Z̃ , f ), HomC (Z̃ , g),
HomC (Z̃ ,T (f )) and HomC (Z̃ ,T (g)) are isomorphisms of abelian groups.

Hence by the Five lemma, HomC (Z̃ , h) is an isomorphism. Therefore,
there exists ϕ ∈ HomC (Z̃ ,Z ) such that

idZ̃ = HomC (Z̃ , h)(ϕ) = hϕ.
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Triangulated Five lemma

Similarly, by applying HomC (−,Z ) we have that there exists
ψ ∈ HomC (Z̃ ,Z ) such that

idZ = HomC (h,Z )(ψ) = ψh.

Thus ϕ = idZ ϕ = ψhϕ = ψ idZ̃ = ψ, and so h is an isomorphism.

Corollary 1.9.

Every exact triangle is uniquely determined up to isomorphism by any one
of its maps.

Idea:
X Y Z T (X )

X̃ Ỹ Z̃ T (X̃ ).

u

idX

v

idY

w

h idT (X )

u ṽ w̃
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Homotopy category

Definition 1.10.

Let A be an abelian category and let CoCh(A) be the category of cochain
complexes in A. We define the homotopy category K(A) of A to be the
category whose objects are cochain complexes (the objects of CoCh(A))
and whose morphisms are homotopy equivalence classes of morphisms in
CoCh(A) (i.e. K(A) is the quotient category of CoCh(A) by the chain
homotopy equivalence).
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Homotopy category

Remark 1.11.

K(A) is an additive category and the quotient functor CoCh(A)→ K(A)
is an additive functor. (But in general K(A) is not an abelian category.)

Moreover K(A) has a universal property: if F : CoCh(A)→ D is a functor
which sends homotopy equivalences to isomorphisms, then F factors
uniquely through K(A).

CoCh(A) D

K(A)

F

∃!
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Bounded complexes

Recall 1.12.

A complex X • is said to be bounded below if there exists n ∈ Z such
that X i = 0 for all i < n; X • is said to be bounded above if there exists
n ∈ Z such that X i = 0 for all i > n; X • is said to be bounded (on both
sides) if it is bounded below and bounded above.

We denote K+(A) (respectively K−(A), Kb(A)) the full subcategory of
K(A) consisting of the complexes bounded below (respectively bounded
above, bounded on both sides).
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The triangulated structure on K(A)

Construction 1.13.

We define now a structure of triangulated category on K(A). As
translation functor we take T the functor which shifts complexes one place
to the left and changes the sign of the differential, i.e.

T (X •)i = X i+1 and diT (X•) = − di+1
X .

We will often write X •[1] instead of T (X •), and X •[n] instead of T n(X •).

Let u : X • → Y • be a morphism in K(A). The mapping cone of u is the
cochain complex T (X •)⊕ Y •, where the differential operator is given by

di =

[
di
T (X•) 0

T (u) di
Y •

]
=

[
− di+1

X• 0

ui+1 di
Y •

]
.
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The triangulated structure on K(A)

By construction, we have that u can be completed to a triangle (which is
unique up to isomorphism by Corollary 1.9). We define an exact triangle in
K(A) to be any triangle isomorphic to a triangle given by the mapping
cone of a morphism of complexes, i.e. if there exists u : X • → Y • and a
commutative diagram in K(A)

X • Y • T (X •)⊕ Y • T (X •)

X̃ • Ỹ • Z̃ • T (X̃ •)

u v w

ũ

f

ṽ

g

w̃

h T (f )

such that f , g , h are isomorphisms in K(A), where v : Y • → T (X •)⊕ Y •

and w : T (X •)⊕ Y • → T (X •) are the natural maps.

Proposition 1.14.

K(A) is a triangulated category.
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Cohomology functor

Proposition 1.15.

Let A be an abelian category. The functor

H : K(A) A

X • kerd0
X• / Imd−1

X•

is a cohomological functor.

H is additive. Let (X •,Y •,Z •, u, v ,w) be an exact triangle in K(A) with
Z • = T (X •)⊕ Y • the mapping cone of u. Then Y • → Z • → T (X •) is
split exact and so

H i (Y •)→ H i (Z •)→ H i (T (X •))

remains exact. By TR2 we are done.
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Triangulated subcategories

Definition 1.16.

Let C be a triangulated category. A full additive subcategory D of C is
said a triangulated subcategory if the following conditions hold:

• Each object isomorphic to an object of D is in D;

• If T is the translation functor of C, then T (X ) ∈ Ob(D) for all
X ∈ Ob(D).

• If (X ,Y ,Z , u, v ,w) is an exact triangle in C such that two of the
three objects X , Y , Z belong to D, then (X ,Y ,Z , u, v ,w) is all
contained in D.

Example 1.17.

Let A be an abelian category. K+(A), K−(A) and Kb(A) are triangulated
subcategories of K(A).
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Part II

Localization of categories
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Multiplicative systems

Definition 2.1.

Let C be a category. A collection S of morphisms of C is called a
multiplicative system if it satisfies the following three axioms:

MS1: • idX ∈ S for each X ∈ Ob(C);
• If f , g ∈ S and fg exists, then fg ∈ S .

MS2: • If s : Z → Y is in S , then for every u : X → Y in C there is a
commutative diagram (sv = ut) in C with t ∈ S :

W Z

X Y ;

v

t s

u
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Multiplicative systems

• If s̃ : Y → Z is in S , then for every ũ : Y → X in C there is a
commutative diagram (ṽ s̃ = t̃ ũ) in C with t̃ ∈ S :

Y X

Z W ;

ũ

s̃ t̃

ṽ

MS3: If f , g : X → Y are morphisms in C, then the following two conditions
are equivalent:

• there exists a morphism s : Y → Y ′ in S such that sf = sg ;

• there exists a morphism t : X ′ → X in S such that ft = gt.
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Localization of categories

Definition 2.2.

Let C be a category and let S be a multiplicative system in C. A
localization of C with respect to S is a category CS together with a
functor Q : C→ CS such that

(a) Q(s) is an isomorphism for every s ∈ S , and

(b) for each category D and for each functor F : C→ D such that F (s) is
an isomorphism for all s ∈ S , there exists a unique functor
FS : CS → D such that F = FS ◦ Q.

We observe that condition (b), which says that (CS ,Q) has a universal
property, implies that the localization of C with respect to S is unique up
to isomorphisms.
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The construction of a localization

Construction 2.3.

We now want to find a way to construct the localization of a category.

Let C be a category and let S be a multiplicative system in C. We call a
diagram in C of the form

X ′

X Y

s a

with s ∈ S a left fraction in C, and we denote it (s, a).
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The construction of a localization

We define a relation on the fractions: for each two left fractions (s1, a1)
and (s2, a2), (s1, a1) ∼ (s2, a2) if there exists a left fraction (s3, a3) and
there exist f : X ′′′ → X ′, g : X ′′′ → X ′′ morphisms in C such that the
following diagram

X ′

X X ′′′ Y

X ′′

s1 a1

s3

f

g

a3

a2s2

is commutative in C (i.e. s1f = s3 = s2g and a1f = a3 = a2g). One can
prove that ∼ is an equivalence relation. We denote by as−1 the
equivalence class of (s, a).
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The construction of a localization

We obtain a new category C̃ setting:

• Ob(C̃) = Ob(C);

• If X and Y are in C̃, the morphisms X → Y in C̃ are equivalence
classes as−1 of fractions as above;

• The composition of two equivalence classes as−1 : X → X ′ → Y and
bt−1 : Y → Y ′ → Z is defined as follows:
since we have the diagram

X ′ Y ′

X Y Z

s a t b

by MS2 there exists
X ′′

X ′ Y ′

t′ c
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The construction of a localization

with t ′ ∈ S such that the diagram

X ′′

X ′ Y ′

X Y Z

t′ c

s a t b

is commutative. Thus we define the composition as

bt−1 ◦ as−1 := bc(st ′)−1 : X → Z .

One can prove that the composition is well defined, i.e. if
a1s
−1
1 = a2s

−1
2 and b1t

−1
1 = b2t

−1
2 , then

b1t
−1
1 ◦ a1s

−1
1 = b2t

−1
2 ◦ a2s

−1
2 .

Luca Mesiti Derived Categories and MCM modules 03/04/2020 06/04/2020 34 / 115



The construction of a localization

Remark 2.4.

Considering as−1 and st−1 morphisms in C̃, by MS2 we have the
commutative diagram

X ′′

X ′ Y ′

X Y Z

s̃ f

t s s a

with s̃ ∈ S . Hence as−1 ◦ st−1 = (af )(ts̃)−1 and ss̃ = sf . By MS3, there
exists a morphism s ′ : W → X ′′ in S such that fs ′ = s̃s ′ ∈ S .

Luca Mesiti Derived Categories and MCM modules 03/04/2020 06/04/2020 35 / 115



The construction of a localization

Therefore the diagram

X ′

X X ′′′ Y

X ′′

t a

ts̃s′

s̃s′

s′

afs′=as̃s′

afts̃

is commutative in C. Then

as−1 ◦ st−1 = (af )(ts̃)−1 = at−1.
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The construction of a localization

Proposition 2.5.

Let C be a category, S a multiplicative system in C and let C̃ be the
category obtained as above.

Let P be the canonical functor C→ C̃ which is the identity map on objects
and which takes a morphism a : X → Y to a(idX )−1:

X X

X

Y Y

a

idX

a

P7−→

Then (C̃,P) is the localization of C with respect to S.
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The construction of a localization

(a): Let s : X → Y be in S . We show that P(s) = s(idX )−1 is an
isomorphism. By Remark 2.4,

idX s−1 ◦ P(s) = idX s−1 ◦ s(idX )−1 = idX id−1
X ,

and using the commutative diagrams

Z̃

X X

Y X Y ,

t̃ g

s idX idX s

whence t̃ = g , and
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The construction of a localization

Y

Y Z̃ Y

Z̃

idY idY

st̃

st̃

idZ̃

sg

st̃st̃

we have P(s) ◦ idX s−1 = s(idX )−1 ◦ idX s−1 = idY id−1
Y .

(b): Suppose that F : C→ D is a functor such that F (s) is an
isomorphism for all s ∈ S . We define a functor FS : C̃→ D as follows:

FS(X ) := F (X ) for each X in C̃ and
FS(as−1) := F (a)F (s)−1 for each as−1 : X → Y in C̃.

Hence for each a : X → Y in C

FS ◦ P(X
a→ Y ) = FS(X

a(idX)−1

−→ Y ) = F (X )
F (a)−→ F (Y ) = F (X

a→ Y ).
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The construction of a localization

If F̃S : C̃→ D is a functor such that F̃S ◦ P(X ′
a→ Y ) = F (X ′

a→ Y ) for
each a : X ′ → Y in C, then by Remark 2.4

F̃S(a(idX ′)
−1) = F̃S(as−1 ◦ s(idX ′)

−1) = F̃S(as−1)F̃S(s(idX ′)
−1) =

= F̃S(as−1)(F̃S ◦ P(X ′
s→ X )) = F̃S(as−1)F (s).

On the other hand,

F̃S(a(idX ′)
−1) = F̃S ◦ P(X ′

a→ Y ) = F (a),

and so F̃S(as−1) = F (a)F (s)−1 = FS(as−1) for each as−1 morphism in
C̃, i.e. F̃S = FS .
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The triangulated structure on the localization

Proposition 2.6.

Let C be a category and let S be a multiplicative system in C. If C is an
additive category then so is (CS ,Q) and Q is an additive functor.

Assume C is an additive category. It is easy to check that Q sends an
initial object (respectively terminal object) to an initial object (respectively
terminal object) and also binary products to binary products. Thus CS has
zero object and binary products.

Let now X and Y be two objects in CS , and let a1s
−1
1 , a2s

−1
2 : X → Y be

two morphisms in CS , i.e. we have the diagram

X ′

X Y

X ′′

s1 a1

a2s2
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The triangulated structure on the localization

By MS2 there exist t ∈ S and g in C such that s2g = s1t:

X ′

X Z Y

X ′′

s1 a1t

g
a2s2

We set s := s2g = s1t, f1 := a1t and f2 := a2g . Hence a1s
−1
1 = f1s

−1 and
a2s
−1
2 = f2s

−1.

We define

a1s
−1
1 + a2s

−1
2 := (f1 + f2)s−1.

One can prove that this sum is well defined and that it makes composition
bilinear.
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The triangulated structure on the localization

Definition 2.7.

Let C be a triangulated category. A multiplicative system S in C is said to
be compatible with the triangulation if the following two axioms are
satisfied:

MST4: s ∈ S if and only if T (s) ∈ S , where T is the translation functor.

MST5: Given two exact triangles (X ,Y ,Z , u, v ,w) and
(X̃ , Ỹ , Z̃ , ũ, ṽ , w̃) with morphisms f : X → X̃ , g : Y → Ỹ in S
such that gu = ũf , then there exists a morphism h : Z → Z̃ in S
such that (f , g , h) is a morphism of triangles.

Luca Mesiti Derived Categories and MCM modules 03/04/2020 06/04/2020 43 / 115



The triangulated structure on the localization

Proposition 2.8.

Let C be a triangulated category and let S be a multiplicative system
compatible with the triangulation. Then (CS ,Q) has a structure of
triangulated category such that Q is a triangulated functor.

Let TC be the translation functor on C. We define a translation functor
TCS

on CS as follows:
- TCS

(A) := TC(A) for every A ∈ Ob(CS);
- TCS

(as−1) := TC(a)TC(s)−1 for every morphism as−1.
Hence we have that QTC = TCS

Q.
We then define an exact triangle in CS to be any triangle
(A,B,C , a1s

−1
1 , a2s

−1
2 , a3s

−1
3 ) isomorphic to

(Q(X ),Q(Y ),Q(Z ),Q(u),Q(v),Q(w)), where (X ,Y ,Z , u, v ,w) is an
exact triangle in C.
One can prove that CS is a triangulated category. Q is then a triangulated
functor by construction.
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The triangulated structure on the localization

Proposition 2.9.

Let C be a category and let S be a multiplicative system in C. Let D be a
full subcategory of C such that the restriction S ∩D is a multiplicative
system in D. Assume furthermore that one of the following two conditions
holds:

i) If s : X ′ → X is in S with X ∈ Ob(D), then there exists a morphism
f : X ′′ → X ′ with X ′′ ∈ Ob(D) such that sf ∈ S.

ii) If t : X → X ′ is in S with X ∈ Ob(D), then there exists a morphism
g : X ′ → X ′′ with X ′′ ∈ Ob(D) such that gt ∈ S.

Then the natural functor DS∩D → CS is full and faithful (i.e. DS∩D can
be identified with a full subcategory of CS).
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Part III

The derived category
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Quasi-isomorphisms

Proposition 3.1.
Let C be a triangulated category, A an abelian category and H : C→ A a
cohomological functor. Let S be the collection of morphisms s in C such
that H(T i (s)) is an isomorphism for all i ∈ Z. Then S is a multiplicative
system compatible with the triangulation in C.

We show that all the axioms hold.

MS1: • For each X ∈ Ob(C) we have that idX is an isomorphism,
hence H(T i (idX )) is an isomorphism for all i ∈ Z; it follows
that idX ∈ S .
• If f , g ∈ S and fg exists, then

H(T i (fg)) = H(T i (f ))H(T i (g)) is an isomorphism for
every i ∈ Z, since H(T i (f )) and H(T i (g)) are isomorphisms
for every i ∈ Z.

MST4: s ∈ S ⇐⇒ H(T i (s)) is an isomorphism for every i ∈ Z
⇐⇒ H(T i−1(T (s))) is an isomorphism for every i ∈ Z
⇐⇒ T (s) ∈ S .
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Quasi-isomorphisms

MST5: Suppose that we have the commutative diagram

X Y Z T (X )

X̃ Ỹ Z̃ T (X̃ )

u

f

v

g

w

h T (f )

ũ ṽ w̃

with f , g ∈ S and h is a morphism induced by f and g by TR3.
Applying H(T i (−)) we have the following commutative diagram
with exact rows:

H(T i (X )) H(T i (Y )) H(T i (Z )) H(T i+1(X )) H(T i+1(Y ))

H(T i (X̃ )) H(T i (Ỹ )) H(T i (Z̃ )) H(T i+1(X̃ )) H(T i+1(Ỹ ))

H(T i (f )) ∼= H(T i (g)) ∼= H(T i (h)) H(T i+1(f )) ∼= H(T i+1(g)) ∼=

Hence by the Five lemma, H(T i (h)) is an isomorphism for every i ∈ Z.
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Quasi-isomorphisms

MS2: If we have the diagram
Z

X Y

s

u

with s ∈ S , then by TR1 there is an exact triangle

Z
s→ Y

f→ N
g→ T (Z )

and so by TR2

Y
f→ N

g→ T (Z )
−T (s)→ T (Y )

is an exact triangle. Again by TR1

fu : X N

Y

u f

can be embedded in an exact triangle X
fu→ N

h→W
t→ T (X ).
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Quasi-isomorphisms

Hence we have a commutative diagram

X N W T (X )

Y N T (Z ) T (Y )

fu

u

h

idN

t

v T (u)

f g −T (s)

with v : W → T (Z ) given by TR3.

It follows that T (u)t = −T (s)v and so uT−1(t) = −sT−1(v).
We set W ′ := T−1(W ), u′ := −T−1(v) and s ′ := T−1(t). Thus
there is a commutative diagram

W ′ X

Z Y .

s′

u′ u

s

Now we show that s ′ = T−1(t) ∈ S .
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Quasi-isomorphisms

Since Z
s→ Y

f→ N
g→ T (Z ) is an exact triangle and H is a

cohomological functor, the sequence

· · · H(T i (Z )) H(T i (Y )) H(T i (N)) H(T i+1(Z )) · · ·H(T i (s)) H(T i (f )) H(T i (g)) H(T i+1(s))

is exact. Furthermore, since s ∈ S , H(T i (s)) is an isomorphism
for every i ∈ Z, and so H(T i (N)) = 0 for every i ∈ Z.

Using the exact triangle X
fu→ N

h→W
t→ T (X ) we have another

long exact sequence:

· · · 0 H(T i (W )) H(T i+1(X )) 0 · · ·H(T i (h)) H(T i (t)) H(T i+1(fu))

Hence H(T i (t)) is an isomorphism for every i ∈ Z and t ∈ S .
By MST4, s ′ ∈ S .

The other part of the axiom is analogous.
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Quasi-isomorphisms

MS3: Let g1, g2 : X → Y be two morphisms in C. We consider the
morphism f = g1 − g2 : X → Y and we show that the following
two conditions are equivalent:

i) there exists s : Y → Y ′ with s ∈ S such that sf = 0;
ii) there exists t : X ′ → X with t ∈ S such that ft = 0.

Suppose that i) is satisfied. By TR1 and TR2, s : Y → Y ′ can
be embedded in an exact triangle

Z Y Y ′ T (Z ).v s

Using the cohomological functor Hom (X ,−) we obtain the
(long) exact sequence

Hom (X ,Z ) Hom (X ,Y ) Hom (X ,Y ′).
v◦− s◦−

Since f ∈ Hom (X ,Y ) and sf = 0, we have that
f ∈ ker(s ◦ −) = Im(v ◦ −) and so there exists g : X → Z such
that f = vg .
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Quasi-isomorphisms

Again by TR1 and TR2, g can be embedded in an exact triangle

X ′ X Z T (X ′).t g

And again using Hom (−,Y ) we obtain the exact sequence

Hom (Z ,Y ) Hom (X ,Y ) Hom (X ′,Y ).
−◦g −◦t

Since v ∈ Hom (Z ,Y ), we have
f = vg ∈ Im(− ◦ g) = ker(− ◦ t) and so ft = 0.

Now we show that t ∈ S . Since Z
v→ Y

s→ Y ′ → T (Z ) is an
exact triangle, we have a long exact sequence

H(T i−1(Y )) H(T i−1(Y ′)) H(T i (Z )) H(T i (Y )) H(T i (Y ′)).
H(T i−1(s)) H(T i (s))

Since s ∈ S , H(T i (Z )) = 0 for every i ∈ Z.
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Quasi-isomorphisms

Using the exact triangle

X ′ X Z T (X ′).t g

we have that

0 H(T i (X ′)) H(T i (X )) 0
H(T i (t))

is exact. It follows that t ∈ S .

The implication ii)⇒ i) is analogous.
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The derived category

Corollary 3.2.

Let A be an abelian category and H : K(A)→ A the cohomological
functor defined in Proposition 1.15. Let Qis be the collection of all
quasi-isomorphisms s, i.e. such that H(T i (s)) is an isomorphism for
every i ∈ Z, in K(A).
Then Qis is a multiplicative system compatible with the triangulation in
K(A).

Similarly, Qis∩K+(A) (respectively Qis∩K−(A), Qis∩Kb(A)) is a
multiplicative system compatible with the triangulation in K+(A)
(respectively K−(A), Kb(A)).

The first assertion is immediate from Proposition 3.1. The last one follows
from Proposition 2.9.
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The derived category

Definition 3.3.

Let A be an abelian category. We define the derived category of A,
denoted D(A), as

D(A) := K(A)Qis

Similarly, we define D+(A) := K+(A)Qis∩K+(A),

D−(A) := K−(A)Qis∩K−(A) and Db(A) := Kb(A)Qis∩Kb(A).

Remark 3.4.

Let A be an abelian category. By Proposition 2.9, D+(A), D−(A) and
Db(A) are full subcategories of D(A).
By Proposition 2.8, D(A), D+(A), D−(A) and Db(A) are all triangulated
categories.
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Part IV

Verdier quotients
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Split triangles

Remark 4.1.

Let (T ,T ) be a triangulated category. Given two exact triangles of the

trivial form X
id→ X → 0→ T (X ) and Z

id→ Z → 0→ T (Z ), we can
construct a new exact triangle summing them, but this is just the trivial
triangle on the sum object.

Instead we can first rotate one of the two and then sum them, to obtain a
triangle of the form

X
(id,0)−→ X ⊕ Z

0+id−→ Z
0−→ T (X )

with the canonical morphisms, which one can show is an exact triangle.
We say that a triangle splits if it is isomorphic to a triangle of this kind.
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Split triangles

Proposition 4.2.

Let T be a triangulated category. Any exact triangle with a zero map
splits.

Let (X ,Y ,Z , u, v , 0) be an exact triangle. As we saw in Remark 4.1, there
is an exact triangle of the form

X
(id,0)−→ X ⊕ Z

0+id−→ Z
0−→ T (X )

and a commutative diagram

X X ⊕ Z Z T (X )

X Y Z T (X )

0

id T (id)

0

Using TR2 and TR3 we can complete it to a morphism of triangles. By
Proposition 1.8 we obtain that the two triangles are isomorphic.
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Thick subcategories

Definition 4.3.

Let T be a triangulated category. A triangulated subcategory S of T is
said thick if it contains all the direct summands of its objects.

Example 4.4.

Let A be an abelian category and consider the triangulated category K(A).
The full subcategory E of K(A) of exact complexes is a thick triangulated
subcategory.
(It is thick because homology commutes with direct sums)
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Thick subcategories

Definition 4.5.

Let F : D→ T be a triangulated functor. We define the kernel of F ,
denoted Ker(F ), to be the full subcategory K of D of objects mapped to
the zero object.

Proposition 4.6.

The kernel K of a triangulated functor F : D→ T is a thick subcategory
of D.

Since the translation functor T commutes with F , we that the property for
an object to be in the kernel of F is respected by T and obviously the
kernel is closed under isomorphism. Now let us see that given an exact
triangle X → Y → Z → T (X ), in D, with X and Y in the kernel, Z has
to be in the kernel too.
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Thick subcategories

Since F is triangulated, F (Z ) fits in an exact triangle of the kind

0→ 0→ F (Z )→ T (0)

and therefore is 0 by Proposition 4.2. Finally, a direct summand of an
object in the kernel is in the kernel because of the additivity of F .

Remark 4.7.

We have just seen that kernels are always thick subcategories. What about
the converse?
This question brings to define Verdier quotients.
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Verdier quotient

Lemma 4.8.

Let D be a triangulated category and let C be a full triangulated
subcategory. Set

SD
C := {f ∈ Arrows(D) such that there exists an exact triangle

(X ,Y ,Z , f , v ,w) of D with Z isomorphic to an object of C}

Then SD
C is a multiplicative system compatible with the triangulation in D.

Let’s prove all the axioms.

MS1: If X ∈ Ob(D) then (X ,X , 0, id, 0, 0) is an exact triangle and 0 is
an object of C; thus idX ∈ SD

C .
Let now f : X → Y and g : Y → Z be composable morphisms
contained in SD

C . Choose exact triangles (X ,Y ,Q1, f , p1, d1),
(X ,Z ,Q2, g ◦ f , p2, d2) and (Y ,Z ,Q3, g , p3, d3).
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Verdier quotient

By assumption we know that Q1 and Q3 are isomorphic to
objects of C. By TR4 we know that there exists an exact triangle
(Q1,Q2,Q3, a, b, c). Since C is a triangulated subcategory we
conclude that Q2 is isomorphic to an object of C. Hence
g ◦ f ∈ SD

C .

MS3: We prove just one implication, the other one is dual. Let
a : X → Y be a morphism and let t : Z → X be an element of
SD
C such that a ◦ t = 0. It suffices to find an s ∈ SD

C such that
s ◦ a = 0. Choose an exact triangle (Z ,X ,Q, t, g , h) using TR1
and TR2. Since a ◦ t = 0 we see by Example 1.7 that there exists
i : Q → Y such that i ◦ g = a.
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Verdier quotient

Finally, using TR1 again we choose an exact triangle
(Q,Y ,W , i , s, k):

Z X Q T (Z )

X Y

W .

t

id

g

i

a

s

Since t ∈ SD
C , we see that Q is isomorphic to an object of C.

Hence s ∈ SD
C . Finally s ◦ a = s ◦ i ◦ g = 0 as s ◦ i = 0 by

Remark 1.4.
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Verdier quotient

MST4: Follows from the fact that exact triangles and C are stable under
translations.

MST5: Suppose given a commutative diagram

X Y

X ′ Y ′

s s′

with s, s ′ ∈ SD
C . It is easy but tedious to prove that we can

extend this commutative square to a nine square diagram
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Verdier quotient

X Y Z T (X )

X ′ Y ′ Z ′ T (X ′)

X ′′ Y ′′ Z ′′ T (X ′′)

T (X ) T (Y ) T (Z ) T (T (X ))

s s′

where all the squares are commutative, except for the lower right
square which is anticommutative, all rows and columns are exact
triangles and the morphisms on the bottom row (respectively
right column) are the translated of the ones in the first row (left
column).
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Verdier quotient

As s, s ′ ∈ SD
C we see that X ′′ and Y ′′ are isomorphic to objects

of C. Since C is a triangulated subcategory we have that Z ′′ is
also isomorphic to an object of C. Hence the morphism Z → Z ′

is an element of SD
C .

MS2: This axiom is actually a formal consequence of MS1, MST4 and
MST5:
Let f : X → Y be a morphism of D and let t : X → X ′ be an
element of SD

C . Choose exact triangles (X ,Y ,Z , f , g , h) and
(X ′,Y ′,Z , f ′, g ′,T (t) ◦ h), by TR1 and TR2.
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Verdier quotient

By MST4 and MST5 (and TR2) we can find the dotted arrow in
the commutative diagram

X Y Z T (X )

X ′ Y ′ Z T (X ′)

t s′ id T (t)

with moreover s ′ ∈ S . This proves one of the points of the
axiom. The proof for the other one is dual.
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Verdier quotient

Definition 4.9.

Let D be a full triangulated category and let C be a triangulated
subcategory of D. The Verdier quotient of D with respect to C, denoted
D/C, is defined to be the localization category DSD

C
where SD

C is the
multiplicative system defined in Lemma 4.8. Moreover the localization
functor D→ DSD

C
is called quotient functor or Verdier localization

map.
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Verdier quotient

Lemma 4.10.

Let D be a triangulated category and let C be a full triangulated
subcategory of D. The kernel of the quotient functor Q : D→ D/C is the
full subcategory of D whose objects are

Ob(Ker(Q)) = {Z ∈ Ob(D) such that there exists a Z ′ ∈ Ob(D)
such that Z ⊕ Z ′ is isomorphic to an object of C}

In other words, Ker(Q) is the smallest full thick subcategory of D
containing C.
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Verdier quotient

From Proposition 4.6, we know that Ker(F ) is a full triangulated
subcategory containing summands of any of its objects. To conclude, it
then suffices to show that the following three statements are equivalent for
any S multiplicative system compatible with the triangulation in D:

(1) Q(Z ) = 0 in DS ;

(2) there exists Z ′ ∈ Ob(D) such that 0 : Z → Z ′ is an element of S ;

(3) there exists an object Z ′ and an exact triangle (X ,Y ,Z ⊕ Z ′, f , g , h)
such that f ∈ S .

“(2)⇒(1)”: If (2) holds, 0 = Q(0) : Q(Z )→ Q(Z ′) is an isomorphism.
Since DS is additive, Q(Z ) = 0.
“(1)⇒(2)”: Assume that Q(Z ) = 0. This implies that the morphism
f : Z → 0 is transformed into an isomorphism in DS . Then one can show
that there exists a morphism g : 0→ Z ′ such that fg ∈ S .
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Verdier quotient

“(2)⇒(3)”: If (2) holds, then (T−1(Z ′),T−1(Z ′)⊕ Z ,Z , (id, 0), 0 + id, 0)
is an exact triangle, by Remark 4.1 with 0 ∈ S . By rotating we conclude
that (3) holds.
“(3)⇒(2)”: If (X ,Y ,Z ⊕ Z ′, f , g , h) is an exact triangle with f ∈ S then
Q(f ) is an isomorphism, whence Q(Z ⊕ Z ′) = 0 and then Q(Z ) = 0.

Remark 4.11.

Let D be a triangulated category and C a thick full triangulated
subcategory. Call Q : D −→ D/C = DSD

C
the quotient functor. From

Lemma 4.10 we have that Ker(Q) is the smallest full thick subcategory of
D which contains C. But if C is thick, then Ker(Q) = C and thus the
Verdier quotient D/C is actually a quotient.
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Verdier quotient

Remark 4.12.

From the properties of the localization, we obtain the universal property of
the quotient for the Verdier quotient and also that the quotient of a
triangulated category for a thick triangulated subcategory is still a
triangulated category.
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Part V

Stabilized categories of a ring
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The main reference

We will describe now an application of the derived categories, given by
Buchweitz in the article ”Maximal Cohen-Macaulay Modules and Tate
Cohomology over Gorenstein Rings”. We will see that maximal
Cohen-Macaulay modules, at least up to projective modules, carry a
natural triangulated structure.
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Notations and Conventions 5.1.

This theory does not require the commutativity of the ring. All rings
considered will be associative with unit, left and right noetherian; all
modules will be unitary.
We will denote Mod - S the category of all right S-modules and module
homomorphisms, and mod - S the full subcategory of Mod - S of finitely
generated S-modules.
We will then denote P(S) the full subcategory of Mod -S of finitely
generated projective modules, and D∗(S) for ∗ in { ,+,−, b} the derived
categories of Mod -S whose objects are all complexes of S-modules with
finitely generated cohomology modules. Correspondingly, K∗(S) will
denote the homotopy categories of those complexes of S-modules whose
cohomology modules are finitely generated.
Each D∗(S) and K∗(S) will be considered a triangulated category with
respect to its natural triangulated structure.
We will mostly focus on Db(S) which is, by the conventions described
above, the derived category of all complexes of S-modules with finitely
generated total cohomology.
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Perfect complexes

Definition 5.2.

A complex of S-modules is said perfect if it is isomorphic in D(S) to a
finite complex of finitely generated projective S-modules.
Perfect complexes form an essential (i.e. closed under isomorphisms), full
and triangulated subcategory of Db(S), denoted Db

perf(S)

Remark 5.3.

An S-module is perfect (considered as a complex concentrated on degree
zero) if and only if its projective dimension is finite.
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Perfect complexes

Lemma 5.4.

Let X be an object in Db(S). Then the following conditions are equivalent:

(i) X is perfect;

(ii) There is an integer i(X ) such that for any i ≥ i(X ) and any finitely
generated S-module M we have that

ExtiS(X ,M) := HomDb(S) (X ,T i (M)) = 0

(iii) For any triangulated functor F : Db(S)→ D into another triangulated
category D for which F (S) = 0, where S is considered a (complex of)
right module(s) over itself, one has that F (X ) = 0.

See [Buchweitz, “Maximal Cohen-Macaulay Modules and
Tate-Cohomology over Gorenstein Rings”, Lemma 1.2.1]
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Stabilized derived category

Corollary 5.5.

Db
perf(S) is a thick triangulated subcategory of Db(S).

Let X be in Db
perf(S) and let Y be a direct summand of X . Then, since

ExtiS(−,M) = HomDb(S) (−,T i (M)) is an additive functor, we obtain that

ExtiS(Y ,M) is a direct summand of ExtiS(X ,M). Now the equivalence
between (1) and (2) of Lemma 5.4 implies that Y is in Db

perf(S).

Remark 5.6.

From Corollary 5.5 and Remarks 4.11 and 4.12 we can then consider the
Verdier quotient Db(S)/Db

perf(S) and this will satisfy the universal
property of the quotient and will be a triangulated category.
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Stabilized derived category

Definition 5.7.

The triangulated quotient category

Db(S) = Db(S)/Db
perf(S)

will be called the stabilized derived category or singularity category of
S .
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Projectively stabilized category

Definition 5.8.

The projectively stabilized category of finitely generated S-modules,
denoted mod -S , is defined by factoring out all projective modules from
mod - S , i.e. mod - S has the same objects as mod - S and its morphisms
are given by

Hom S (M,N) := Hom mod -S (M,N) =
Hom S (M,N)

{f : M → N | f factors through a projective S-module}

for all finitely generated S-modules M and N.
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Stably equivalent modules

Remark 5.9.

mod - S is still an additive category and two S-modules M and N are
isomorphic in mod - S if and only if they are stably equivalent (by
projectives), i.e. ∃ P,Q finitely generated projective S-modules such that
M ⊕ P ∼=S N ⊕ Q.

“⇒”: Assume M and N are isomorphic in mod- S . Then there exist

f : M → N and g : N → M such that gf − idM : M
φ1→ P

φ2→ M with P

projective and fg − idN : N
ψ1→ Q

ψ2→ N with Q projective.

Now we construct M
f ′→ N ⊕ P

g ′→ M such that g ′f ′ = idM and
f ′g ′ − idN⊕P factors through a projective.

For this, we define f ′(m) := (f (m), φ1(m)) and g ′(n, p) := g(n)− φ2(p).

Then f ′g ′ − idN⊕P : N ⊕ P
θ1→ Q ⊕ P ⊕ P

θ2→ N ⊕ P with Q ⊕ P ⊕ P
projective, θ1(n, p) := (ψ1(n), p, φ1 ◦ g(n)− φ1(φ2(p))) and
θ2(q, p1, p2) := (ψ2(q)− f ◦ φ2(p1), p2 − p1).
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Stably equivalent modules

Now we have that M ⊕ Ker(g ′) ∼= N ⊕ P, and then, using the fact that
f ′g ′ − idN⊕P factors through a projective, that Ker(g ′) is projective.
In fact Ker(g ′) is a direct summand of N ⊕ P, and writing i and π for the
inclusion and projection maps, we have that

π ◦ (idN⊕P −f ′g ′) ◦ i = idKer(g ′).

Since idN⊕P −f ′g ′ factors through a projective, so does idKer(g ′) and so
Ker(g ′) is a direct summand of a projective and therefore projective.

“⇐”: Assume now that M ⊕ P ∼=S N ⊕ Q with P and Q projective and
call ϕ the isomorphism. Now consider the maps

M M ⊕ P N ⊕ Q N N ⊕ Q M ⊕ P M

f

∼=
ϕ

g

∼=
ϕ−1

We are done if we prove that gf − idM and fg − idN factor through a
projective. But, for simmetry, it suffices to show that just gf − idM factors
through a projective.
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Stably equivalent modules

Now consider the map in the upper part of the diagram, which we call
q : M → M:

Q

M M ⊕ P N ⊕ Q N ⊕ Q M ⊕ P M

N

∼=
ϕ

∼=
ϕ−1

while the map in the lower part of the diagram is gf : M → M.
It is easy to see that gf + q = idM . Then gf − idM = −q and −q is an
S-linear map which factors through a projective, namely Q.
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The loop-space functor and the functor ιS

Definition 5.10.

The loop-space functor ΩS on mod- S is defined by

ΩSM = Ker(pM)

for every M ∈ mod-S , where pM is a chosen surjection pM : PM → M
with PM a finitely generated projective S-module.

Lemma 5.11.

The composition
mod-S → Db(S)→ Db(S)

factors uniquely through the canonical quotient functor mod-S → mod-S
and hence yields a naturally defined functor

ιS : mod- S → Db(S).

It transforms the loop-space functor ΩS into the inverse of the translation
functor on Db(S).

The first part is immediate. For the last assertion, note that by definition
of ΩS there is an exact triangle

ιS(ΩSM)→ ιS(PM)→ ιS(M)
d→ T (ιS(ΩSM))

in which ιS(PM) is obviously perfect. Hence the morphism d becomes an
isomorphism in Db(S).
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Complete resolutions

Definition 5.12.

Let M ∈Mod - S . Then a complete resolution of M (over S) is an
acyclic complex (A, dA) of finitely generated projective S-modules such
that

Cok(d0
A : A−1 → A0) = M.

To abbreviate notations, the complex A− = (A≤0, dA |A≤0) with its natural
induced augmentation onto M is called the associated projective
resolution of M, whereas the complex A+ = (A≥1, dA |A≥1)[1] with its
natural induced augmentation onto M into it is the associated projective
co-resolution of M.

Luca Mesiti Derived Categories and MCM modules 03/04/2020 06/04/2020 87 / 115



The category of complete resolutions

Remark 5.13.

M is necessarily finitely generated if it admits a complete resolution, and a
finitely generated module admits a complete resolution if and only if it
admits a projective co-resolution.
The complete resolution A itself is obtained as the translated mapping
cone of − d0 : A− → A+, i.e. A = C(− d0)[1], so that − d0 serves as the
connecting homomorphism from the associated projective resolution to the
associated projective co-resolution.

Definition 5.14.

The category of complete resolutions, denoted APC(S), is defined as
the homotopy category of acyclic complexes of finitely generated projective
S-modules.
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The category of complete resolutions

Remark 5.15.

APC(S) is a full triangulated subcategory of K(S), so it inherits a
triangulated structure from K(S).

Definition 5.16.

We define now a collection of functors on APC(S):
for any complex (X , idX ) in K(S) set

Ωi (X ) = Cok(d−iX : X−i−1 → X−i ) for any i ∈ Z.

We will call Ωi (X ) defined above the i-th syzygy module of X .
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The category of complete resolutions

Remark 5.17.

As obviously

Ω0(X [1]) = Cok(− d−1
X : X 0 → X 1) ' Ω−1(X )

one obtains

Ωi (X [j ]) ' Ωi−j(X )

for all integers i , j and all complexes X .
Anyway this isomorphism of functors is not canonical.

Lemma 5.18.

Each Ωi defines a functor from APC(S) into mod-S. It transforms the
inverse of the translation functor on APC(S) into the loop-space functor
ΩS on mod-S.
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The category of complete resolutions

If X → Y is a morphism of complexes of finitely generated projective
S-modules which is zero-homotopic, then, for any i , the induced morphism
of S-modules Ωi (f ) : Ωi (X )→ Ωi (Y ) factors over a finitely generated
projective S-module - namely over both X−i+1 and Y−i . In fact we have
the following diagram:

X−i−1 X−i X−i+1

Ωi (X )

Y−i−1 Y−i Y−i+1

Ωi (Y )

f −i−1

s−i
f −i

s−i+1

f −i+1

Ωi (f )

ι

d−i−1
Y j
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The category of complete resolutions

where the dashed arrows are the morphisms which represent the homotopy
equivalence with 0, and our claim follows using that all the squares are
commutative, that the two triangles with Ωi commute and that
j ◦ d−i−1

Y ◦s−i = 0.
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The naive filtration functors

Construction 5.19.

Now we will set up functors from APC(S) to Db(S). For this, we consider
the naive filtration associated to a comples X in K(S): (σ≤kX )k∈Z given
by

(σ≤k+1X ) X≤k+1 ≡ (· · · X i · · · X k X k+1 0 · · · )

(σ≤kX ) X≤k ≡ (· · · X i · · · X k 0 0 · · · )

id
Xi id

Xk

We obviously have an equality of functors

σ≤k ◦ T i = T i ◦ σ≤k+1 for all k and i .
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The naive filtration functors

Coming back to acyclic complexes of finitely generated projective
S-modules, the following lemma is easily established.

Lemma 5.20.

Let A and B be objects of APC(S). Then one has:

(i) In D(S) (the class of) the canonical morphism of complexes
σ≤kA→ (Ω−kA)[−k] becomes an isomorphism, or - equivalently -

(i ′) (σ≤kA)[k] is a projective resolution of Ω−kA.

(ii) For any two integers k, l with k ≤ l , the mapping cone over the
natural morphism σ≤lA→ σ≤kA is perfect.

(iii) If f : A→ B is a morphism of complexes which is homotopic to zero,
all the induced morphisms σ≤k f : σ≤kA→ σ≤kB in Db(S) are zero.
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The naive filtration functors

To prove (i), it suffices to say that the morphism of complexes

· · · Ai · · · Ak−1 Ak 0 · · ·

· · · 0 · · · 0 Cok(Ak−1 → Ak) 0 · · ·

induces an isomorphism on cohomologies. But it easily follows from the
definition of cohomology.
(ii) is not difficult to prove, as we can reduce to have 0 in all places in
which σ≤lA and σ≤kA differ, and there are only finitely many places left.

Luca Mesiti Derived Categories and MCM modules 03/04/2020 06/04/2020 95 / 115



The naive filtration functors

We now prove (iii), which is the most difficult part. Consider the
commutative diagram of morphisms of complexes

σ≤kA (Ω−kA)[−k]

σ≤kB (Ω−kB)[−k]

σ≤k f (Ω−k f )[−k]

whose horizontal arrows become isomorphisms in Db(S), by (i), and hence
in Db(S). But, as observed above, f zero-homotopic implies that Ω−k f
factors over a projective module, and so the class of (Ω−k f )[−k] is zero in
Db(S).
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The naive filtration functors

Corollary 5.21.

The naive truncations (σ≤k)k∈Z define a directed system of functors

· · · σ≤k σ≤k−1 · · ·' ' '

from APC(S) to Db(S), whose transition morphisms are all isomorphisms.
In particular, its inverse limit σ≤ = lim←−k

σ≤k exists and it is a
triangulated functor of triangulated categories

σ≤ : APC(S)→ Db(S).

Luca Mesiti Derived Categories and MCM modules 03/04/2020 06/04/2020 97 / 115



Part VI

Maximal Cohen-Macaulay modules
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Strongly Gorenstein rings

From now on, assume that the ring S , which is still noetherian on both
sides, that S is of finite injective dimension both as a left or a right
module over itself.

Remark 6.1.

If both the left and right injective dimension of S are finite, they are the
same and we will call this common value injective or virtual dimension
of S . We will denote it vdim S .

See [A. Zacks, “Injective Dimension of Semi-Primary Rings”].

Definition 6.2.

We call such rings with finite virtual dimension strongly Gorenstein.

This definition is motivated from the fact that in the commutative case it
is a stronger notion of what is normally called Gorenstein, and which is
implicated by Gorenstein and of finite Krull dimension.
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Strongly Gorenstein rings

Definition 6.3.

Let S̃ be a ring. We call the opposite ring of S̃ the ring which has the
same elements of S and the same addition, but multiplication performed
in the reverse order. More explicitly, the opposite of a ring (S̃ ,+, ·) is the
ring (S̃ ,+, ∗), whose multiplication is defined as a ∗ b := b · a for every
a, b ∈ S̃ .
Note that this is exactly what we expect if we consider the category
associated to a ring.

Remark 6.4.

A ring S is strongly Gorenstein if and only if this holds for Sop, the
opposite ring of S .

It follows from the left-right simmetry of the definition of strongly
Gorenstein.
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Maximal Cohen-Macaulay modules

Definition 6.5.

Let S be a noetherian ring of finite injective dimension. Then a finitely
generated S-module is maximal Cohen-Macaulay (MCM for short) if

ExtiS(M,S) = 0 for i 6= 0.

The full subcategory of maximal Cohen-Macaulay modules in mod- S is
denoted MCM(S), and accordingly, its image in mod-S by MCM(S).

To keep the definition “coordinate-free” one may replace the module S in
the above definition by any faithfully projective (right) S-module P:

M ∈ mod-S is MCM if and only if ExtiS(M,P) = 0 for i 6= 0,

where faithfully projective means that Hom(P,−) is faithful, exact and
preserves products.
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Maximal Cohen-Macaulay modules

Remark 6.6.

Again the terminology is borrowed from commutative algebra, as over a
local, commutative Gorenstein ring it coincides with the usual notion, i.e.
Cohen-Macaulay and such that the dimension equals the dimension of the
ring, which is the maximal possible.

Example 6.7.

Let S = k[x , y ]/(x2, xy), M = S/(x). Then M is maximal
Cohen-Macaulay over S .

We have that (x2, xy) = (x2, x) ∩ (x2, y) = (x) ∩ (x2, y). So we
immediatly see that dim(S) = 1. Now observe that
M = S/(x) ∼= k[x , y ]/(x , xy) ∼= k[x , y ]/(x) ∼= k[y ] and so
dim(M) = 1 = depth(M). Thus M is maximal Cohen-Macaulay.
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Maximal Cohen-Macaulay modules

Lemma 6.8.

Let S be a ring which is strongly Gorenstein. Then

(i) Any finitely generated projective S-module is maximal
Cohen-Macaulay, i.e. P(S) is a full subcategory of MCM(S).

(ii) If 0→ M1
f→ M2 → M3 → 0 is an exact sequence in mod-S, then

- M2,M3 in MCM(S) implies that M1 is MCM,
- M1,M3 in MCM(S) implies that M2 is MCM.
- M1,M2 in MCM(S) implies that M3 is MCM if and only if

Hom S (f , S) is surjective.
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Maximal Cohen-Macaulay modules

Lemma 6.8 - part 2.

(iii) A module M is MCM over S if and only if M∗ = HomS (M, S) is
MCM as a right module over Sop. Furthermore, MCM’s are reflexive,
i.e. M = M∗∗, and a sequence of such is short exact in mod- S if and
only if the dual sequence in mod-Sop is exact.
In other words, the functor Hom S (−, S) induces an exact duality
between MCM(S) and MCM(Sop).

(iv) Any module in mod-S admits a finite resolution by MCM’s of lenght
at most equal to vdim S . (In such a resolution all but the last module
can chosen to be finitely generated projective.)
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Maximal Cohen-Macaulay modules

(i) : It follows immediatly from the defintion, because
ExtiS(P,S) = 0

for every P finitely generated projective.

(ii) : It follows easily from the long exact sequence induced by
Ext•S(−, S).

(iii) : From a projective resolution of M, by dualizing, we can get a
projective co-resolution of M∗ in mod- Sop, also using the definition
of maximal Cohen-Macaulay. From this one can conclude the proof,
but it’s not trivial. In fact it is needed that for strongly Gorenstein
rings, maximal Cohen-Macaulay modules are exactly the modules
which are syzygy modules of arbitrarily high order. This last assertion
is the reason why we focus on strongly Gorenstein rings. For this and
(iv), see [Buchweitz, “Maximal Cohen-Macaulay Modules and Tate
Cohomology over Gorenstein Rings”, Lemma 4.2.2].
Furthermore, dualizing once again, it follows that M is reflexive.
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The main theorem
Theorem 6.9.

Let S be a left and right noetherian ring, of finite injective dimension as a
module over itself on either side. Then

(1) The syzygy functor Ω0, defined in Definition 5.16 induces an
equivalence functor - denoted by the same symbol -

Ω0 : APC(S)→ MCM(S)

(2) The restriction of ιS , defined in Lemma 5.11, to MCM(S) yields an
equivalence of categories - again denoted by the same symbol -

ιS : MCM(S)→ Db(S)

(3) The triangulated structures induced on MCM(S) by either Ω0 or ιS
are the same, in the sense that the identity on MCM(S) becomes a
triangulated isomorphism of triangulated categories, and with respect
to these structures, both functors Ω0 and ιS are triangulated functors
of triangulated categories, transforming the corresponding translation
functor T into an inverse of the loop space functor ΩS restricted to
MCM(S).
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The main theorem

Before going into the proof, we resume the situation graphically. There is
a diagram of categories and functors, whose rows are “exact sequences” of
categories:

0 P(S) MCM(S) MCM(S) 0

0 P(S) mod-S mod-S 0 APC(S)

0 Db
perf(S) Db(S) Db(S) 0

ιS'

ιS

Ω0

'

ιSΩ0'σ≤0

'

where the unlabeled morphisms are the canonical functors.
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The proof of the main theorem

(i) Ω0 takes its values in MCM(S):
Assume given an acyclic complex A of finitely generated projective
S-modules. Then

ExtiS(Ω0A,S) = Exti+j
S (Ω−jA, S)

for all i > 0, j ≥ 0. Taking some j > vdim S − i we get that
ExtiS(Ω0A, S) = 0. Since i was arbitrary > 0, we are done.

(ii) Ω0 is surjective on objects:
Let M be a maximal Cohen-Macaulay module over S , P(M∗)→ M∗

a projective resolution of M∗ in mod- Sop. As in the proof of the
Lemma 6.8,

0→ M∗∗ → Hom Sop (P(M∗),Sop) = P(M∗)∗

will be a projective co-resolution of M∗∗ in mod- S . Now M ' M∗∗,
as M is reflexive, and hence extending the projective co-resolution of
M∗∗ by a projective resolution of M yields a desired pre-image.
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The proof of the main theorem

(iii) Ω0 is a full functor:
Let f : M → N be a S-linear map of maximal Cohen-Macaulay
modules over S . Extend it to a morphism f • : P(M)→ P(N)
between chosen projective resolutions and analogously f ∗ : N∗ → M∗

to a morphism (f ∗)• : P(N∗)→ P(M∗). Connecting P(M) and
P(M∗)∗ as well as P(N) and P(N∗)∗ to have complete resolutions of
M and N respectively, f • and ((f ∗)•)∗ fit together to yield a
morphism of these complete resolutions. By construction, this
provides a pre-image of f . Hence Ω0 is full.

To complete the proof of assertion (1), it remains to be seen that Ω0 is
faithful. Instead of proving this and then (2) we rather show that

σ≤ : APC(S)→ Db(S) is an equivalence of categories.
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The proof of the main theorem

This will imply the claim, since by Lemma 5.20, there are natural
isomorphisms of functors

σ≤
'→ σ≤0

'→ ιSΩ0

whence σ≤ an equivalence gives that Ω0 is faithful, and therefore also an
equivalence by the above. And finally also ιS will then be an equivalence
of categories, establishing (2).

So we prove:

(iv) σ≤ is essentially surjective:
In view of using Lemma 5.20, we find for any complex X in Db(S) an
integer k , an object A in APC(S) and a morphism X → σ≤kA of
complexes whose mapping cone is perfect. Also, replacing if necessary
X by one of its resolutions, we may assume that X itself is already a
bounded above complex of finitely generated projective S-modules.
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The proof of the main theorem

Then, all the syzygy modules of X which sit “far enough back” have
to be maximal Cohen-Macaulay. More precisely, using the same
argument as in (i) above,
σ≤k(X ) = Cok(dk

X ) = Im(dk+1
X : X k → X k+1) is certainly MCM for

k ≤ min(i : Hi (X ) 6= 0)− vdim S , and σ≤k(X )[k] is a resolution of
this module which can be extended to an acyclic complex of
projectives by the argument already used in (ii) above.

(v) σ≤ is full and faithful:
We use Verdier’s criterion, which can be found in Verdier, Catégories
Derivées, Etat 0, in SGA 4 1/2, 262-311:
It suffices to prove that for a given perfect complex Y in Db(S) and
an object A in APC(S) there exists an integer k such that all

morphisms in Db(S) from σ≤kA into Y are zero.
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The proof of the main theorem

As σ≤kA is a bounded above complex of projective modules,
morphisms in Db(S) from σ≤kA into Y are in bijection with
homotopy classes of (actual) morphisms of complexes and it is hence
to show that any such morphism is indeed zero-homotopic.
Furthermore, it is enough to prove this assertion in case Y = P[−i ],
P a finitely generated projective S-module and i an integer, as these
objects generate - up to isomorphisms in Db(S) - any perfect complex
by forming mapping cones.
Now, in this particular case, take any k > i and let f • be a complex
morphism from σ≤kA to P[−i ]:

· · · Ai−1 Ai Ai+1 ? · · ·

· · · 0 P 0 0 · · ·

di

f i

di+1
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The proof of the main theorem

The S-linear map f i factors hence necessarily over Cok(di ), ket
g : Cok(di )→ P be the induced map. It remains to show that g can
be further factored through the inclusion (by choice of k) of
Cok(di ) = Ω−iA into Ai+1.

But from the exact sequence

0→ Ω−iA→ Ai+1 → Ω−i−1A→ 0

we have the long exact sequence

0→ Hom(Ω−i−1A,P)→ Hom(Ai+1,P)→ Hom(Ω−iA,P)→ Ext1
S(Ω−i−1A,P)

so it follows that the obstruction for that factorization lies in
Ext1

S(Ω−i−1A,P), which vanishes as P is finitely generated projective
and Ω−i−1A is still maximal Cohen-Macaulay by the argument in (1)
above.
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The proof of the main theorem

Thus we have the commutative diagram

Ai Cok(di ) P

Ai+1

di+1

f i

g

s

Finally, (3) is just a reformulation of Lemma 5.11 and Lemma 5.18.
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